Xuejia Kang Ms , Junwei Wang Ms , Chung-Hui Huang Bs , Fajar Setyo Wibowo Ms , Rajesh Amin PhD , Pengyu Chen PhD , Feng Li PhD
{"title":"二乙基二硫代氨基甲酸铜纳米颗粒在不抑制p糖蛋白的情况下克服了癌症治疗的耐药性","authors":"Xuejia Kang Ms , Junwei Wang Ms , Chung-Hui Huang Bs , Fajar Setyo Wibowo Ms , Rajesh Amin PhD , Pengyu Chen PhD , Feng Li PhD","doi":"10.1016/j.nano.2022.102620","DOIUrl":null,"url":null,"abstract":"<div><p><span>Copper diethyldithiocarbamate [Cu(DDC)</span><sub>2</sub><span><span>] is a promising anticancer agent. However, its poor water solubility is a significant obstacle to clinical application. In previous studies, we developed a stabilized </span>metal ion ligand complex (SMILE) method to prepare Cu(DDC)</span><sub>2</sub><span><span> nanoparticle (NP) to address the </span>drug delivery challenge. In the current study, we investigate the use of Cu(DDC)</span><sub>2</sub> NP for treating P-glycoprotein (P-gp) mediated drug-resistant cancers. We tested its anticancer efficacy with extensive <em>in vitro</em> cell-based assays and <em>in vivo</em><span> xenograft tumor model. We also explored the mechanism of overcoming drug resistance by Cu(DDC)</span><sub>2</sub> NP. Our results indicate that Cu(DDC)<sub>2</sub> NP is not a substrate of P-gp and thus can avoid P-gp mediated drug efflux. Further, the Cu(DDC)<sub>2</sub> NP does not inhibit the activity or the expression of P-gp.</p></div>","PeriodicalId":396,"journal":{"name":"Nanomedicine: Nanotechnology, Biology and Medicine","volume":"47 ","pages":"Article 102620"},"PeriodicalIF":4.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Diethyldithiocarbamate copper nanoparticle overcomes resistance in cancer therapy without inhibiting P-glycoprotein\",\"authors\":\"Xuejia Kang Ms , Junwei Wang Ms , Chung-Hui Huang Bs , Fajar Setyo Wibowo Ms , Rajesh Amin PhD , Pengyu Chen PhD , Feng Li PhD\",\"doi\":\"10.1016/j.nano.2022.102620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Copper diethyldithiocarbamate [Cu(DDC)</span><sub>2</sub><span><span>] is a promising anticancer agent. However, its poor water solubility is a significant obstacle to clinical application. In previous studies, we developed a stabilized </span>metal ion ligand complex (SMILE) method to prepare Cu(DDC)</span><sub>2</sub><span><span> nanoparticle (NP) to address the </span>drug delivery challenge. In the current study, we investigate the use of Cu(DDC)</span><sub>2</sub> NP for treating P-glycoprotein (P-gp) mediated drug-resistant cancers. We tested its anticancer efficacy with extensive <em>in vitro</em> cell-based assays and <em>in vivo</em><span> xenograft tumor model. We also explored the mechanism of overcoming drug resistance by Cu(DDC)</span><sub>2</sub> NP. Our results indicate that Cu(DDC)<sub>2</sub> NP is not a substrate of P-gp and thus can avoid P-gp mediated drug efflux. Further, the Cu(DDC)<sub>2</sub> NP does not inhibit the activity or the expression of P-gp.</p></div>\",\"PeriodicalId\":396,\"journal\":{\"name\":\"Nanomedicine: Nanotechnology, Biology and Medicine\",\"volume\":\"47 \",\"pages\":\"Article 102620\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine: Nanotechnology, Biology and Medicine\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S154996342200106X\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine: Nanotechnology, Biology and Medicine","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S154996342200106X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Diethyldithiocarbamate copper nanoparticle overcomes resistance in cancer therapy without inhibiting P-glycoprotein
Copper diethyldithiocarbamate [Cu(DDC)2] is a promising anticancer agent. However, its poor water solubility is a significant obstacle to clinical application. In previous studies, we developed a stabilized metal ion ligand complex (SMILE) method to prepare Cu(DDC)2 nanoparticle (NP) to address the drug delivery challenge. In the current study, we investigate the use of Cu(DDC)2 NP for treating P-glycoprotein (P-gp) mediated drug-resistant cancers. We tested its anticancer efficacy with extensive in vitro cell-based assays and in vivo xenograft tumor model. We also explored the mechanism of overcoming drug resistance by Cu(DDC)2 NP. Our results indicate that Cu(DDC)2 NP is not a substrate of P-gp and thus can avoid P-gp mediated drug efflux. Further, the Cu(DDC)2 NP does not inhibit the activity or the expression of P-gp.
期刊介绍:
Nanomedicine: Nanotechnology, Biology and Medicine (NBM) is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.