利用普通过渡金属催化剂作为种子光敏剂进行π键体系光化学活化的机遇与挑战

Ganesh kumar Dhandabani , Pei-Wen Hsieh , Jeh-Jeng Wang
{"title":"利用普通过渡金属催化剂作为种子光敏剂进行π键体系光化学活化的机遇与挑战","authors":"Ganesh kumar Dhandabani ,&nbsp;Pei-Wen Hsieh ,&nbsp;Jeh-Jeng Wang","doi":"10.1016/j.jphotochemrev.2023.100589","DOIUrl":null,"url":null,"abstract":"<div><p>The volatility of noble metals prices, globally increasing demands, and its limited resources drive chemists to find alternatives in the place of expensive transition metal catalysts<span><span><span><span>. So, this is a time for the scientific community to find alternative sources to replace Nobel metals, and it is making genuine changes in developing sustainable synthetic methods. Photoexcited transition-metal catalysis is revitalizing the research area for functionalizing diverse π-bond systems. The massive progression of the two conventional photochemical reactivity modes, photoredox catalysis, and synergetic photocatalyst/transition-metal catalysis, has fueled the search for a next-level mechanistic paradigm visible-light initiated excited-state transition-metal catalysis (Cu, Pd, Fe, Au, Co, Ni, W, and Mn), which can be deployed to harvest </span>light energy and convert it into chemical energy in a single catalytic cycle. This review summarizes early examples of the visible-light-induced </span>photocatalytic activities of conventional transition metals employed in C-H activation, π-bond functionalization, and annulation reactions of </span>unsaturated compounds, and excluding the commonly used expensive photocatalysts (i.e., Ir-, and Ru-based pyridyl complexes). Unlike the other two classical photochemical approaches, the discrete inner-sphere mechanism associated with photoexcited transition metals facilitates reactive substrate-metal-complex interactions. It enables the direct involvement of excited-state catalysts in bond-forming or-breaking processes.</span></p></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"55 ","pages":"Article 100589"},"PeriodicalIF":12.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Opportunities and challenges in photochemical activation of π-bond system using common transition-metal-catalyzes as a seminal photosensitizer\",\"authors\":\"Ganesh kumar Dhandabani ,&nbsp;Pei-Wen Hsieh ,&nbsp;Jeh-Jeng Wang\",\"doi\":\"10.1016/j.jphotochemrev.2023.100589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The volatility of noble metals prices, globally increasing demands, and its limited resources drive chemists to find alternatives in the place of expensive transition metal catalysts<span><span><span><span>. So, this is a time for the scientific community to find alternative sources to replace Nobel metals, and it is making genuine changes in developing sustainable synthetic methods. Photoexcited transition-metal catalysis is revitalizing the research area for functionalizing diverse π-bond systems. The massive progression of the two conventional photochemical reactivity modes, photoredox catalysis, and synergetic photocatalyst/transition-metal catalysis, has fueled the search for a next-level mechanistic paradigm visible-light initiated excited-state transition-metal catalysis (Cu, Pd, Fe, Au, Co, Ni, W, and Mn), which can be deployed to harvest </span>light energy and convert it into chemical energy in a single catalytic cycle. This review summarizes early examples of the visible-light-induced </span>photocatalytic activities of conventional transition metals employed in C-H activation, π-bond functionalization, and annulation reactions of </span>unsaturated compounds, and excluding the commonly used expensive photocatalysts (i.e., Ir-, and Ru-based pyridyl complexes). Unlike the other two classical photochemical approaches, the discrete inner-sphere mechanism associated with photoexcited transition metals facilitates reactive substrate-metal-complex interactions. It enables the direct involvement of excited-state catalysts in bond-forming or-breaking processes.</span></p></div>\",\"PeriodicalId\":376,\"journal\":{\"name\":\"Journal of Photochemistry and Photobiology C: Photochemistry Reviews\",\"volume\":\"55 \",\"pages\":\"Article 100589\"},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Photochemistry and Photobiology C: Photochemistry Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389556723000205\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389556723000205","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

贵金属价格的波动,全球需求的增加,以及其有限的资源,促使化学家们寻找替代品来取代昂贵的过渡金属催化剂。因此,现在是科学界寻找替代诺贝尔金属的替代来源的时候了,并且在开发可持续的合成方法方面正在做出真正的改变。光激发过渡金属催化为各种π键体系的功能化研究注入了新的活力。光氧化还原催化和协同光催化/过渡金属催化这两种传统光化学反应模式的巨大进展,推动了对可见光激发的激发态过渡金属催化(Cu, Pd, Fe, Au, Co, Ni, W和Mn)下一层次机制范式的探索,该模式可以用于收集光能并在单个催化循环中将其转化为化学能。本文综述了传统过渡金属在不饱和化合物的C-H活化、π键功能化和环化反应中的可见光诱导光催化活性的早期例子,不包括常用的昂贵的光催化剂(即Ir和ru基吡啶配合物)。与其他两种经典光化学方法不同,与光激发过渡金属相关的离散内球机制促进了反应性衬底-金属配合物相互作用。它使激发态催化剂能够直接参与成键或断键过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Opportunities and challenges in photochemical activation of π-bond system using common transition-metal-catalyzes as a seminal photosensitizer

The volatility of noble metals prices, globally increasing demands, and its limited resources drive chemists to find alternatives in the place of expensive transition metal catalysts. So, this is a time for the scientific community to find alternative sources to replace Nobel metals, and it is making genuine changes in developing sustainable synthetic methods. Photoexcited transition-metal catalysis is revitalizing the research area for functionalizing diverse π-bond systems. The massive progression of the two conventional photochemical reactivity modes, photoredox catalysis, and synergetic photocatalyst/transition-metal catalysis, has fueled the search for a next-level mechanistic paradigm visible-light initiated excited-state transition-metal catalysis (Cu, Pd, Fe, Au, Co, Ni, W, and Mn), which can be deployed to harvest light energy and convert it into chemical energy in a single catalytic cycle. This review summarizes early examples of the visible-light-induced photocatalytic activities of conventional transition metals employed in C-H activation, π-bond functionalization, and annulation reactions of unsaturated compounds, and excluding the commonly used expensive photocatalysts (i.e., Ir-, and Ru-based pyridyl complexes). Unlike the other two classical photochemical approaches, the discrete inner-sphere mechanism associated with photoexcited transition metals facilitates reactive substrate-metal-complex interactions. It enables the direct involvement of excited-state catalysts in bond-forming or-breaking processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
21.90
自引率
0.70%
发文量
36
审稿时长
47 days
期刊介绍: The Journal of Photochemistry and Photobiology C: Photochemistry Reviews, published by Elsevier, is the official journal of the Japanese Photochemistry Association. It serves as a platform for scientists across various fields of photochemistry to communicate and collaborate, aiming to foster new interdisciplinary research areas. The journal covers a wide scope, including fundamental molecular photochemistry, organic and inorganic photochemistry, photoelectrochemistry, photocatalysis, solar energy conversion, photobiology, and more. It provides a forum for discussing advancements and promoting collaboration in the field of photochemistry.
期刊最新文献
Biophotonics and nanorobotics for biomedical imaging, biosensing, drug delivery, and therapy Photocatalytic water splitting reaction: The pathway from semiconductors to MOFs Boron doped nanomaterials for photocatalysis Fluorescent fluorinated materials: A novel material for application in photodynamic therapy and designing chemical sensors Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1