Charles C Church, Cecille Labuda, Kathryn Nightingale
{"title":"是否应该修改ARFI成像的机械指标?","authors":"Charles C Church, Cecille Labuda, Kathryn Nightingale","doi":"10.1109/ULTSYM.2012.0005","DOIUrl":null,"url":null,"abstract":"<p><p>The mechanical index (MI) quantifies the likelihood that exposure to diagnostic ultrasound will produce an adverse biological effect by a nonthermal mechanism. The current formulation of the MI is based on inertial cavitation thresholds in two liquids, water and blood, as calculated by a formalism assuming very short pulse durations. Although tissue contains a high proportion of water, it is not a liquid but a viscoelastic solid. Further, acoustic radiation force impulse imaging employs high-intensity pulses up to several hundred acoustic periods long. The effect of these differences was studied in water, blood and five representative tissues.</p>","PeriodicalId":73288,"journal":{"name":"IEEE International Ultrasonics Symposium : [proceedings]. IEEE International Ultrasonics Symposium","volume":"2012 ","pages":"17-20"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ULTSYM.2012.0005","citationCount":"14","resultStr":"{\"title\":\"Should the mechanical index be revised for ARFI imaging?\",\"authors\":\"Charles C Church, Cecille Labuda, Kathryn Nightingale\",\"doi\":\"10.1109/ULTSYM.2012.0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The mechanical index (MI) quantifies the likelihood that exposure to diagnostic ultrasound will produce an adverse biological effect by a nonthermal mechanism. The current formulation of the MI is based on inertial cavitation thresholds in two liquids, water and blood, as calculated by a formalism assuming very short pulse durations. Although tissue contains a high proportion of water, it is not a liquid but a viscoelastic solid. Further, acoustic radiation force impulse imaging employs high-intensity pulses up to several hundred acoustic periods long. The effect of these differences was studied in water, blood and five representative tissues.</p>\",\"PeriodicalId\":73288,\"journal\":{\"name\":\"IEEE International Ultrasonics Symposium : [proceedings]. IEEE International Ultrasonics Symposium\",\"volume\":\"2012 \",\"pages\":\"17-20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/ULTSYM.2012.0005\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Ultrasonics Symposium : [proceedings]. IEEE International Ultrasonics Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ULTSYM.2012.0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Ultrasonics Symposium : [proceedings]. IEEE International Ultrasonics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2012.0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Should the mechanical index be revised for ARFI imaging?
The mechanical index (MI) quantifies the likelihood that exposure to diagnostic ultrasound will produce an adverse biological effect by a nonthermal mechanism. The current formulation of the MI is based on inertial cavitation thresholds in two liquids, water and blood, as calculated by a formalism assuming very short pulse durations. Although tissue contains a high proportion of water, it is not a liquid but a viscoelastic solid. Further, acoustic radiation force impulse imaging employs high-intensity pulses up to several hundred acoustic periods long. The effect of these differences was studied in water, blood and five representative tissues.