组织工程中一维细胞摄取的最优控制。

IF 2 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Optimal Control Applications & Methods Pub Date : 2013-11-01 DOI:10.1002/oca.2047
Masako Kishida, Ashlee N Ford Versypt, Daniel W Pack, Richard D Braatz
{"title":"组织工程中一维细胞摄取的最优控制。","authors":"Masako Kishida,&nbsp;Ashlee N Ford Versypt,&nbsp;Daniel W Pack,&nbsp;Richard D Braatz","doi":"10.1002/oca.2047","DOIUrl":null,"url":null,"abstract":"<p><p>A control problem motivated by tissue engineering is formulated and solved in which control of the uptake of growth factors (signaling molecules) is necessary to spatially and temporally regulate cellular processes for the desired growth or regeneration of a tissue. Four approaches are compared for determining 1D optimal boundary control trajectories for a distributed parameter model with reaction, diffusion, and convection: (i) basis function expansion, (ii) method of moments, (iii) internal model control (IMC), and (iv) model predictive control (MPC). The proposed method-of-moments approach is computationally efficient while enforcing a non-negativity constraint on the control input. While more computationally expensive than methods (i)-(iii), the MPC formulation significantly reduced the computational cost compared to simultaneous optimization of the entire control trajectory. A comparison of the pros and cons of each of the four approaches suggests that an algorithm that combines multiple approaches is most promising for solving the optimal control problem for multiple spatial dimensions.</p>","PeriodicalId":54672,"journal":{"name":"Optimal Control Applications & Methods","volume":"34 6","pages":"680-695"},"PeriodicalIF":2.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/oca.2047","citationCount":"8","resultStr":"{\"title\":\"Optimal Control of One-dimensional Cellular Uptake in Tissue Engineering.\",\"authors\":\"Masako Kishida,&nbsp;Ashlee N Ford Versypt,&nbsp;Daniel W Pack,&nbsp;Richard D Braatz\",\"doi\":\"10.1002/oca.2047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A control problem motivated by tissue engineering is formulated and solved in which control of the uptake of growth factors (signaling molecules) is necessary to spatially and temporally regulate cellular processes for the desired growth or regeneration of a tissue. Four approaches are compared for determining 1D optimal boundary control trajectories for a distributed parameter model with reaction, diffusion, and convection: (i) basis function expansion, (ii) method of moments, (iii) internal model control (IMC), and (iv) model predictive control (MPC). The proposed method-of-moments approach is computationally efficient while enforcing a non-negativity constraint on the control input. While more computationally expensive than methods (i)-(iii), the MPC formulation significantly reduced the computational cost compared to simultaneous optimization of the entire control trajectory. A comparison of the pros and cons of each of the four approaches suggests that an algorithm that combines multiple approaches is most promising for solving the optimal control problem for multiple spatial dimensions.</p>\",\"PeriodicalId\":54672,\"journal\":{\"name\":\"Optimal Control Applications & Methods\",\"volume\":\"34 6\",\"pages\":\"680-695\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/oca.2047\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimal Control Applications & Methods\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/oca.2047\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimal Control Applications & Methods","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/oca.2047","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 8

摘要

一个由组织工程驱动的控制问题被制定和解决,其中控制生长因子(信号分子)的摄取是必要的,以空间和时间调节细胞过程,以实现所需的组织生长或再生。比较了四种方法来确定具有反应、扩散和对流的分布参数模型的一维最优边界控制轨迹:(i)基函数展开,(ii)矩量法,(iii)内模控制(IMC)和(iv)模型预测控制(MPC)。所提出的矩量法方法在控制输入上施加非负性约束的同时具有计算效率。虽然MPC公式比方法(i)-(iii)的计算成本更高,但与同时优化整个控制轨迹相比,MPC公式显著降低了计算成本。通过对这四种方法优缺点的比较,我们发现结合多种方法的算法最有希望解决多空间维度的最优控制问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal Control of One-dimensional Cellular Uptake in Tissue Engineering.

A control problem motivated by tissue engineering is formulated and solved in which control of the uptake of growth factors (signaling molecules) is necessary to spatially and temporally regulate cellular processes for the desired growth or regeneration of a tissue. Four approaches are compared for determining 1D optimal boundary control trajectories for a distributed parameter model with reaction, diffusion, and convection: (i) basis function expansion, (ii) method of moments, (iii) internal model control (IMC), and (iv) model predictive control (MPC). The proposed method-of-moments approach is computationally efficient while enforcing a non-negativity constraint on the control input. While more computationally expensive than methods (i)-(iii), the MPC formulation significantly reduced the computational cost compared to simultaneous optimization of the entire control trajectory. A comparison of the pros and cons of each of the four approaches suggests that an algorithm that combines multiple approaches is most promising for solving the optimal control problem for multiple spatial dimensions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optimal Control Applications & Methods
Optimal Control Applications & Methods 工程技术-应用数学
CiteScore
3.90
自引率
11.10%
发文量
108
审稿时长
3 months
期刊介绍: Optimal Control Applications & Methods provides a forum for papers on the full range of optimal and optimization based control theory and related control design methods. The aim is to encourage new developments in control theory and design methodologies that will lead to real advances in control applications. Papers are also encouraged on the development, comparison and testing of computational algorithms for solving optimal control and optimization problems. The scope also includes papers on optimal estimation and filtering methods which have control related applications. Finally, it will provide a focus for interesting optimal control design studies and report real applications experience covering problems in implementation and robustness.
期刊最新文献
An optimal control model for COVID-19, zika, dengue, and chikungunya co-dynamics with reinfection. Analysis of COVID-19 and comorbidity co-infection model with optimal control. Prediction of asymptomatic COVID-19 infections based on complex network. Reachability Set Sufficient Optimality Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1