{"title":"春化的遗传和表观遗传机制。","authors":"Dong-Hwan Kim, Sibum Sung","doi":"10.1199/tab.0171","DOIUrl":null,"url":null,"abstract":"<p><p>Plants have evolved a number of monitoring systems to sense their surroundings and to coordinate their growth and development accordingly. Vernalization is one example, in which flowering is promoted after plants have been exposed to a long-term cold temperature (i.e. winter). Vernalization results in the repression of floral repressor genes that inhibit the floral transition in many plant species. Here, we describe recent advances in our understanding of the vernalization-mediated promotion of flowering in Arabidopsis and other flowering plants. In Arabidopsis, the vernalization response includes the recruitment of chromatin-modifying complexes to floral repressors and thus results in the enrichment of repressive histone marks that ensure the stable repression of floral repressor genes. Changes in histone modifications at floral repressor loci are stably maintained after cold exposure, establishing the competence to flower the following spring. We also discuss similarities and differences in regulatory circuits in vernalization responses among Arabidopsis and other plants. </p>","PeriodicalId":74946,"journal":{"name":"The arabidopsis book","volume":"12 ","pages":"e0171"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1199/tab.0171","citationCount":"79","resultStr":"{\"title\":\"Genetic and epigenetic mechanisms underlying vernalization.\",\"authors\":\"Dong-Hwan Kim, Sibum Sung\",\"doi\":\"10.1199/tab.0171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plants have evolved a number of monitoring systems to sense their surroundings and to coordinate their growth and development accordingly. Vernalization is one example, in which flowering is promoted after plants have been exposed to a long-term cold temperature (i.e. winter). Vernalization results in the repression of floral repressor genes that inhibit the floral transition in many plant species. Here, we describe recent advances in our understanding of the vernalization-mediated promotion of flowering in Arabidopsis and other flowering plants. In Arabidopsis, the vernalization response includes the recruitment of chromatin-modifying complexes to floral repressors and thus results in the enrichment of repressive histone marks that ensure the stable repression of floral repressor genes. Changes in histone modifications at floral repressor loci are stably maintained after cold exposure, establishing the competence to flower the following spring. We also discuss similarities and differences in regulatory circuits in vernalization responses among Arabidopsis and other plants. </p>\",\"PeriodicalId\":74946,\"journal\":{\"name\":\"The arabidopsis book\",\"volume\":\"12 \",\"pages\":\"e0171\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1199/tab.0171\",\"citationCount\":\"79\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The arabidopsis book\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1199/tab.0171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2014/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The arabidopsis book","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1199/tab.0171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Genetic and epigenetic mechanisms underlying vernalization.
Plants have evolved a number of monitoring systems to sense their surroundings and to coordinate their growth and development accordingly. Vernalization is one example, in which flowering is promoted after plants have been exposed to a long-term cold temperature (i.e. winter). Vernalization results in the repression of floral repressor genes that inhibit the floral transition in many plant species. Here, we describe recent advances in our understanding of the vernalization-mediated promotion of flowering in Arabidopsis and other flowering plants. In Arabidopsis, the vernalization response includes the recruitment of chromatin-modifying complexes to floral repressors and thus results in the enrichment of repressive histone marks that ensure the stable repression of floral repressor genes. Changes in histone modifications at floral repressor loci are stably maintained after cold exposure, establishing the competence to flower the following spring. We also discuss similarities and differences in regulatory circuits in vernalization responses among Arabidopsis and other plants.