心脏细胞间电通讯:插入磁盘的一种新的、积极的作用。

Q2 Biochemistry, Genetics and Molecular Biology Cell Communication and Adhesion Pub Date : 2014-06-01 Epub Date: 2014-04-15 DOI:10.3109/15419061.2014.905932
Rengasayee Veeraraghavan, Steven Poelzing, Robert G Gourdie
{"title":"心脏细胞间电通讯:插入磁盘的一种新的、积极的作用。","authors":"Rengasayee Veeraraghavan,&nbsp;Steven Poelzing,&nbsp;Robert G Gourdie","doi":"10.3109/15419061.2014.905932","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiac conduction is the propagation of electrical excitation through the heart and is responsible for triggering individual myocytes to contract in synchrony. Canonically, this process has been thought to occur electrotonically, by means of direct flow of ions from cell to cell. The intercalated disk (ID), the site of contact between adjacent myocytes, has been viewed as a structure composed of mechanical junctions that stabilize the apposition of cell membranes and gap junctions which constitute low resistance pathways between cells. However, emerging evidence suggests a more active role for structures within the ID in mediating intercellular electrical communication by means of non-canonical ephaptic mechanisms. This review will discuss the role of the ID in the context of the canonical, electrotonic view of conduction and highlight new, emerging possibilities of its playing a more active role in ephaptic coupling between cardiac myocytes.</p>","PeriodicalId":55269,"journal":{"name":"Cell Communication and Adhesion","volume":"21 3","pages":"161-7"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/15419061.2014.905932","citationCount":"43","resultStr":"{\"title\":\"Intercellular electrical communication in the heart: a new, active role for the intercalated disk.\",\"authors\":\"Rengasayee Veeraraghavan,&nbsp;Steven Poelzing,&nbsp;Robert G Gourdie\",\"doi\":\"10.3109/15419061.2014.905932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cardiac conduction is the propagation of electrical excitation through the heart and is responsible for triggering individual myocytes to contract in synchrony. Canonically, this process has been thought to occur electrotonically, by means of direct flow of ions from cell to cell. The intercalated disk (ID), the site of contact between adjacent myocytes, has been viewed as a structure composed of mechanical junctions that stabilize the apposition of cell membranes and gap junctions which constitute low resistance pathways between cells. However, emerging evidence suggests a more active role for structures within the ID in mediating intercellular electrical communication by means of non-canonical ephaptic mechanisms. This review will discuss the role of the ID in the context of the canonical, electrotonic view of conduction and highlight new, emerging possibilities of its playing a more active role in ephaptic coupling between cardiac myocytes.</p>\",\"PeriodicalId\":55269,\"journal\":{\"name\":\"Cell Communication and Adhesion\",\"volume\":\"21 3\",\"pages\":\"161-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3109/15419061.2014.905932\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Communication and Adhesion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3109/15419061.2014.905932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2014/4/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Adhesion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/15419061.2014.905932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/4/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 43

摘要

心脏传导是电兴奋通过心脏的传播,并负责触发单个肌细胞同步收缩。通常,这一过程被认为是通过电张力发生的,通过离子在细胞之间的直接流动。插入盘(ID)是相邻肌细胞之间的接触部位,被认为是由机械连接组成的结构,它稳定了细胞膜的附着和构成细胞间低阻力通路的间隙连接。然而,新出现的证据表明,ID内的结构在通过非规范的触觉机制介导细胞间电通信方面发挥了更积极的作用。这篇综述将讨论ID在典型的传导电紧张观背景下的作用,并强调它在心肌细胞之间的上皮偶联中发挥更积极作用的新可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intercellular electrical communication in the heart: a new, active role for the intercalated disk.

Cardiac conduction is the propagation of electrical excitation through the heart and is responsible for triggering individual myocytes to contract in synchrony. Canonically, this process has been thought to occur electrotonically, by means of direct flow of ions from cell to cell. The intercalated disk (ID), the site of contact between adjacent myocytes, has been viewed as a structure composed of mechanical junctions that stabilize the apposition of cell membranes and gap junctions which constitute low resistance pathways between cells. However, emerging evidence suggests a more active role for structures within the ID in mediating intercellular electrical communication by means of non-canonical ephaptic mechanisms. This review will discuss the role of the ID in the context of the canonical, electrotonic view of conduction and highlight new, emerging possibilities of its playing a more active role in ephaptic coupling between cardiac myocytes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Communication and Adhesion
Cell Communication and Adhesion 生物-生化与分子生物学
CiteScore
2.50
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Cessation Cell Communication and Adhesion is an international Open Access journal which provides a central forum for research on mechanisms underlying cellular signalling and adhesion. The journal provides a single source of information concerning all forms of cellular communication, cell junctions, adhesion molecules and families of receptors from diverse biological systems. The journal welcomes submission of original research articles, reviews, short communications and conference reports.
期刊最新文献
Krüppel-like factor 4 mediates cellular migration and invasion by altering RhoA activity. Establishment and characterization of a carcinoma-associated fibroblast cell line derived from a human salivary gland adenoid cystic carcinoma. Fabrication of nanofiber coated with l-arginine via electrospinning technique: a novel nanomatrix to counter oxidative stress under crosstalk of co-cultured fibroblasts and satellite cells. Pannexin1 Single Nucleotide Polymorphism and Platelet Reactivity in a Cohort of Cardiovascular Patients Phosphatidylethanolamine Deficiency Impairs Escherichia coli Adhesion by Downregulating Lipopolysaccharide Synthesis, Which is Reversible by High Galactose/Lactose Cultivation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1