牙槽骨丢失:机制、潜在治疗靶点和干预措施。

Q1 Medicine Advances in Dental Research Pub Date : 2014-05-01 DOI:10.1177/0022034514529305
G Intini, Y Katsuragi, K L Kirkwood, S Yang
{"title":"牙槽骨丢失:机制、潜在治疗靶点和干预措施。","authors":"G Intini,&nbsp;Y Katsuragi,&nbsp;K L Kirkwood,&nbsp;S Yang","doi":"10.1177/0022034514529305","DOIUrl":null,"url":null,"abstract":"<p><p>This article reviews recent research into mechanisms underlying bone resorption and highlights avenues of investigation that may generate new therapies to combat alveolar bone loss in periodontitis. Several proteins, signaling pathways, stem cells, and dietary supplements are discussed as they relate to periodontal bone loss and regeneration. RGS12 is a crucial protein that mediates osteoclastogenesis and bone destruction, and a potential therapeutic target. RGS12 likely regulates osteoclast differentiation through regulating calcium influx to control the calcium oscillation-NFATc1 pathway. A working model for RGS10 and RGS12 in the regulation of Ca(2+) oscillations during osteoclast differentiation is proposed. Initiation of inflammation depends on host cell-microbe interactions, including the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Oral p38 inhibitors reduced lipopolysaccharide (LPS)-induced bone destruction in a rat periodontitis model but showed unsatisfactory safety profiles. The p38 substrate MK2 is a more specific therapeutic target with potentially superior tolerability. Furthermore, MKP-1 shows anti-inflammatory activity, reducing inflammatory cytokine biosynthesis and bone resorption. Multipotent skeletal stem cell (SSC) populations exist within the bone marrow and periosteum of long bones. These bone-marrow-derived SSCs and periosteum-derived SSCs have shown therapeutic potential in several applications, including bone and periodontal regeneration. The existence of craniofacial bone-specific SSCs is suggested based on existing studies. The effects of calcium, vitamin D, and soy isoflavone supplementation on alveolar and skeletal bone loss in post-menopausal women were investigated. Supplementation resulted in stabilization of forearm bone mass density and a reduced rate of alveolar bone loss over 1 yr, compared with placebo. Periodontal attachment levels were also well-maintained and alveolar bone loss suppressed during 24 wk of supplementation. </p>","PeriodicalId":7300,"journal":{"name":"Advances in Dental Research","volume":" ","pages":"38-46"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0022034514529305","citationCount":"27","resultStr":"{\"title\":\"Alveolar bone loss: mechanisms, potential therapeutic targets, and interventions.\",\"authors\":\"G Intini,&nbsp;Y Katsuragi,&nbsp;K L Kirkwood,&nbsp;S Yang\",\"doi\":\"10.1177/0022034514529305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article reviews recent research into mechanisms underlying bone resorption and highlights avenues of investigation that may generate new therapies to combat alveolar bone loss in periodontitis. Several proteins, signaling pathways, stem cells, and dietary supplements are discussed as they relate to periodontal bone loss and regeneration. RGS12 is a crucial protein that mediates osteoclastogenesis and bone destruction, and a potential therapeutic target. RGS12 likely regulates osteoclast differentiation through regulating calcium influx to control the calcium oscillation-NFATc1 pathway. A working model for RGS10 and RGS12 in the regulation of Ca(2+) oscillations during osteoclast differentiation is proposed. Initiation of inflammation depends on host cell-microbe interactions, including the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Oral p38 inhibitors reduced lipopolysaccharide (LPS)-induced bone destruction in a rat periodontitis model but showed unsatisfactory safety profiles. The p38 substrate MK2 is a more specific therapeutic target with potentially superior tolerability. Furthermore, MKP-1 shows anti-inflammatory activity, reducing inflammatory cytokine biosynthesis and bone resorption. Multipotent skeletal stem cell (SSC) populations exist within the bone marrow and periosteum of long bones. These bone-marrow-derived SSCs and periosteum-derived SSCs have shown therapeutic potential in several applications, including bone and periodontal regeneration. The existence of craniofacial bone-specific SSCs is suggested based on existing studies. The effects of calcium, vitamin D, and soy isoflavone supplementation on alveolar and skeletal bone loss in post-menopausal women were investigated. Supplementation resulted in stabilization of forearm bone mass density and a reduced rate of alveolar bone loss over 1 yr, compared with placebo. Periodontal attachment levels were also well-maintained and alveolar bone loss suppressed during 24 wk of supplementation. </p>\",\"PeriodicalId\":7300,\"journal\":{\"name\":\"Advances in Dental Research\",\"volume\":\" \",\"pages\":\"38-46\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/0022034514529305\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Dental Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/0022034514529305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Dental Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0022034514529305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 27

摘要

本文综述了近期对骨吸收机制的研究,并强调了可能产生对抗牙周炎牙槽骨丢失的新疗法的研究途径。几个蛋白质,信号通路,干细胞和膳食补充剂讨论,因为他们与牙周骨丢失和再生。RGS12是介导破骨细胞发生和骨破坏的重要蛋白,是潜在的治疗靶点。RGS12可能通过调节钙内流控制钙振荡- nfatc1通路调控破骨细胞分化。提出了RGS10和RGS12调控破骨细胞分化过程中Ca(2+)振荡的工作模型。炎症的启动取决于宿主细胞-微生物的相互作用,包括p38丝裂原活化蛋白激酶(MAPK)信号通路。口服p38抑制剂在大鼠牙周炎模型中减少脂多糖(LPS)诱导的骨破坏,但安全性不理想。p38底物MK2是一个更特异的治疗靶点,具有潜在的更好的耐受性。此外,MKP-1显示抗炎活性,减少炎症细胞因子的生物合成和骨吸收。多能骨干细胞(SSC)群体存在于长骨的骨髓和骨膜中。这些骨髓来源的SSCs和骨膜来源的SSCs在包括骨和牙周再生在内的几种应用中显示出治疗潜力。根据已有的研究,认为颅面骨特异性ssc的存在。研究了钙、维生素D和大豆异黄酮补充剂对绝经后妇女牙槽骨和骨骼骨质流失的影响。与安慰剂相比,补品可稳定前臂骨密度,并在1年内降低牙槽骨损失率。在24周的补充中,牙周附着水平也得到了很好的维持,牙槽骨丢失得到了抑制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Alveolar bone loss: mechanisms, potential therapeutic targets, and interventions.

This article reviews recent research into mechanisms underlying bone resorption and highlights avenues of investigation that may generate new therapies to combat alveolar bone loss in periodontitis. Several proteins, signaling pathways, stem cells, and dietary supplements are discussed as they relate to periodontal bone loss and regeneration. RGS12 is a crucial protein that mediates osteoclastogenesis and bone destruction, and a potential therapeutic target. RGS12 likely regulates osteoclast differentiation through regulating calcium influx to control the calcium oscillation-NFATc1 pathway. A working model for RGS10 and RGS12 in the regulation of Ca(2+) oscillations during osteoclast differentiation is proposed. Initiation of inflammation depends on host cell-microbe interactions, including the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Oral p38 inhibitors reduced lipopolysaccharide (LPS)-induced bone destruction in a rat periodontitis model but showed unsatisfactory safety profiles. The p38 substrate MK2 is a more specific therapeutic target with potentially superior tolerability. Furthermore, MKP-1 shows anti-inflammatory activity, reducing inflammatory cytokine biosynthesis and bone resorption. Multipotent skeletal stem cell (SSC) populations exist within the bone marrow and periosteum of long bones. These bone-marrow-derived SSCs and periosteum-derived SSCs have shown therapeutic potential in several applications, including bone and periodontal regeneration. The existence of craniofacial bone-specific SSCs is suggested based on existing studies. The effects of calcium, vitamin D, and soy isoflavone supplementation on alveolar and skeletal bone loss in post-menopausal women were investigated. Supplementation resulted in stabilization of forearm bone mass density and a reduced rate of alveolar bone loss over 1 yr, compared with placebo. Periodontal attachment levels were also well-maintained and alveolar bone loss suppressed during 24 wk of supplementation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Dental Research
Advances in Dental Research Medicine-Medicine (all)
CiteScore
8.20
自引率
0.00%
发文量
0
期刊最新文献
Women in Dental Clinical and Translational Research. Geroscience: Aging and Oral Health Research. Commentary: Challenges and Opportunities for Women in Dental Research Then and Now—A Look Inside the Lives of 11 Women Presidents of the IADR Women Recipients of IADR Distinguished Scientist Awards
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1