Daniela Nitoiu, Sarah L Etheridge, David P Kelsell
{"title":"从遗传性人类皮肤病和心皮肤综合征深入了解桥粒生物学。","authors":"Daniela Nitoiu, Sarah L Etheridge, David P Kelsell","doi":"10.3109/15419061.2014.908854","DOIUrl":null,"url":null,"abstract":"<p><p>The importance of desmosomes in tissue homeostasis is highlighted by natural and engineered mutations in desmosomal genes, which compromise the skin or heart and in some instances both. Desmosomal gene mutations account for 45-50% of cases of arrhythmogenic right ventricular cardiomyopathy, and are mutated in an array of other disorders such as striate palmoplantar keratoderma, hypotrichosis with or without skin vesicles and lethal acantholytic epidermolysis bullosa. Recently, we reported loss-of-function mutations in the human ADAM17 gene, encoding for the 'sheddase' ADAM17, a transmembrane protein which cleaves extracellular domains of substrate proteins including TNF-α, growth factors and desmoglein (DSG) 2. Patients present with cardiomyopathy and an inflammatory skin and bowel syndrome with defective DSG processing. In contrast, the dominantly inherited tylosis with oesophageal cancer appears to result from gain-of-function in ADAM17 due to increased processing via iRHOM2. This review discusses the heterogeneity of mutations in desmosomes and their regulatory proteins.</p>","PeriodicalId":55269,"journal":{"name":"Cell Communication and Adhesion","volume":"21 3","pages":"129-40"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/15419061.2014.908854","citationCount":"28","resultStr":"{\"title\":\"Insights into desmosome biology from inherited human skin disease and cardiocutaneous syndromes.\",\"authors\":\"Daniela Nitoiu, Sarah L Etheridge, David P Kelsell\",\"doi\":\"10.3109/15419061.2014.908854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The importance of desmosomes in tissue homeostasis is highlighted by natural and engineered mutations in desmosomal genes, which compromise the skin or heart and in some instances both. Desmosomal gene mutations account for 45-50% of cases of arrhythmogenic right ventricular cardiomyopathy, and are mutated in an array of other disorders such as striate palmoplantar keratoderma, hypotrichosis with or without skin vesicles and lethal acantholytic epidermolysis bullosa. Recently, we reported loss-of-function mutations in the human ADAM17 gene, encoding for the 'sheddase' ADAM17, a transmembrane protein which cleaves extracellular domains of substrate proteins including TNF-α, growth factors and desmoglein (DSG) 2. Patients present with cardiomyopathy and an inflammatory skin and bowel syndrome with defective DSG processing. In contrast, the dominantly inherited tylosis with oesophageal cancer appears to result from gain-of-function in ADAM17 due to increased processing via iRHOM2. This review discusses the heterogeneity of mutations in desmosomes and their regulatory proteins.</p>\",\"PeriodicalId\":55269,\"journal\":{\"name\":\"Cell Communication and Adhesion\",\"volume\":\"21 3\",\"pages\":\"129-40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3109/15419061.2014.908854\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Communication and Adhesion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3109/15419061.2014.908854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2014/4/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Adhesion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/15419061.2014.908854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/4/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Insights into desmosome biology from inherited human skin disease and cardiocutaneous syndromes.
The importance of desmosomes in tissue homeostasis is highlighted by natural and engineered mutations in desmosomal genes, which compromise the skin or heart and in some instances both. Desmosomal gene mutations account for 45-50% of cases of arrhythmogenic right ventricular cardiomyopathy, and are mutated in an array of other disorders such as striate palmoplantar keratoderma, hypotrichosis with or without skin vesicles and lethal acantholytic epidermolysis bullosa. Recently, we reported loss-of-function mutations in the human ADAM17 gene, encoding for the 'sheddase' ADAM17, a transmembrane protein which cleaves extracellular domains of substrate proteins including TNF-α, growth factors and desmoglein (DSG) 2. Patients present with cardiomyopathy and an inflammatory skin and bowel syndrome with defective DSG processing. In contrast, the dominantly inherited tylosis with oesophageal cancer appears to result from gain-of-function in ADAM17 due to increased processing via iRHOM2. This review discusses the heterogeneity of mutations in desmosomes and their regulatory proteins.
期刊介绍:
Cessation
Cell Communication and Adhesion is an international Open Access journal which provides a central forum for research on mechanisms underlying cellular signalling and adhesion. The journal provides a single source of information concerning all forms of cellular communication, cell junctions, adhesion molecules and families of receptors from diverse biological systems.
The journal welcomes submission of original research articles, reviews, short communications and conference reports.