系统生物学方法能帮助找到更有效的治疗急性髓系白血病的方法吗?

Systems and Synthetic Biology Pub Date : 2014-06-01 Epub Date: 2014-04-16 DOI:10.1007/s11693-014-9147-5
Anuradha Vaidya
{"title":"系统生物学方法能帮助找到更有效的治疗急性髓系白血病的方法吗?","authors":"Anuradha Vaidya","doi":"10.1007/s11693-014-9147-5","DOIUrl":null,"url":null,"abstract":"<p><p>Acute myeloid leukemia (AML) is a hematological cancer comprising of cancer stem cells (CSCs) that are responsible for the disease progression, drug resistance and post treatment relapses. Advances in genomic technologies have identified AML as a genetically heterogenous disease with dysregulated gene expression networks. Furthermore, observation of intracellular signaling in individual CSCs by mass cytometry has demonstrated the dysregulation of the mitogen associated protein kinase (MAPK) pathways. It has been envisaged that the future treatment for AML would entail upon formulating individualized treatment plans leading to decreased drug related toxicities for patients. However the emerging role of signaling pathways as dynamic molecular switches influencing the cell cycle process, thereby leading to varying stages of cell differentiation, is making community rethink about the current strategies used for the treatment of AML. This commentary will focus on discovering novel biomarkers and identifying new therapeutic targets, to analyze and treat AML, on a platform enabled by systems biology approach. </p>","PeriodicalId":22161,"journal":{"name":"Systems and Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11693-014-9147-5","citationCount":"5","resultStr":"{\"title\":\"Can systems biology approach help in finding more effective treatment for acute myeloid leukemia?\",\"authors\":\"Anuradha Vaidya\",\"doi\":\"10.1007/s11693-014-9147-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acute myeloid leukemia (AML) is a hematological cancer comprising of cancer stem cells (CSCs) that are responsible for the disease progression, drug resistance and post treatment relapses. Advances in genomic technologies have identified AML as a genetically heterogenous disease with dysregulated gene expression networks. Furthermore, observation of intracellular signaling in individual CSCs by mass cytometry has demonstrated the dysregulation of the mitogen associated protein kinase (MAPK) pathways. It has been envisaged that the future treatment for AML would entail upon formulating individualized treatment plans leading to decreased drug related toxicities for patients. However the emerging role of signaling pathways as dynamic molecular switches influencing the cell cycle process, thereby leading to varying stages of cell differentiation, is making community rethink about the current strategies used for the treatment of AML. This commentary will focus on discovering novel biomarkers and identifying new therapeutic targets, to analyze and treat AML, on a platform enabled by systems biology approach. </p>\",\"PeriodicalId\":22161,\"journal\":{\"name\":\"Systems and Synthetic Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s11693-014-9147-5\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems and Synthetic Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11693-014-9147-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2014/4/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems and Synthetic Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11693-014-9147-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/4/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

急性髓性白血病(AML)是一种由癌症干细胞(CSCs)组成的血液学癌症,它与疾病进展、耐药和治疗后复发有关。基因组技术的进步已经确定AML是一种基因表达网络失调的遗传异质性疾病。此外,通过流式细胞术观察单个CSCs的细胞内信号传导已经证实了丝裂原相关蛋白激酶(MAPK)通路的失调。据设想,未来AML的治疗将需要制定个性化的治疗计划,从而降低患者的药物相关毒性。然而,信号通路作为影响细胞周期过程的动态分子开关的新兴作用,从而导致细胞分化的不同阶段,正在使社区重新思考当前用于治疗AML的策略。本评论将侧重于发现新的生物标志物和确定新的治疗靶点,在系统生物学方法支持的平台上分析和治疗AML。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Can systems biology approach help in finding more effective treatment for acute myeloid leukemia?

Acute myeloid leukemia (AML) is a hematological cancer comprising of cancer stem cells (CSCs) that are responsible for the disease progression, drug resistance and post treatment relapses. Advances in genomic technologies have identified AML as a genetically heterogenous disease with dysregulated gene expression networks. Furthermore, observation of intracellular signaling in individual CSCs by mass cytometry has demonstrated the dysregulation of the mitogen associated protein kinase (MAPK) pathways. It has been envisaged that the future treatment for AML would entail upon formulating individualized treatment plans leading to decreased drug related toxicities for patients. However the emerging role of signaling pathways as dynamic molecular switches influencing the cell cycle process, thereby leading to varying stages of cell differentiation, is making community rethink about the current strategies used for the treatment of AML. This commentary will focus on discovering novel biomarkers and identifying new therapeutic targets, to analyze and treat AML, on a platform enabled by systems biology approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting stable functional peptides from the intergenic space of E. coli. The role of CRKL in breast cancer metastasis: insights from systems biology. The synthetic biology puzzle: a qualitative study on public reflections towards a governance framework. Exploring the differences in metabolic behavior of astrocyte and glioblastoma: a flux balance analysis approach. Evolving modular genetic regulatory networks with a recursive, top-down approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1