高变形环境下不确定运动规划。

Sachin Patil, Jur van den, Berg Ron Alterovitz
{"title":"高变形环境下不确定运动规划。","authors":"Sachin Patil,&nbsp;Jur van den,&nbsp;Berg Ron Alterovitz","doi":"10.15607/rss.2011.vii.033","DOIUrl":null,"url":null,"abstract":"<p><p>Many tasks in robot-assisted surgery, food handling, manufacturing, and other applications require planning and controlling the motions of manipulators or other devices that must interact with highly deformable objects. We present a unified approach for motion planning under uncertainty in deformable environments that maximizes probability of success by accounting for uncertainty in deformation models, noisy sensing, and unpredictable actuation. Unlike prior planners that assume deterministic deformations or treat deformations as a type of small perturbation, our method explicitly considers the uncertainty in large, time-dependent deformations. Our method requires a simulator of deformable objects but places no significant restrictions on the simulator used. We use a sampling-based motion planner in conjunction with the simulator to generate a set of candidate plans based on expected deformations. Our method then uses the simulator and optimal control to numerically estimate time-dependent state distributions based on uncertain parameters (e.g. deformable material properties or actuation errors). We then select the plan with the highest estimated probability of successfully avoiding obstacles and reaching the goal region. Using FEM-based simulation of deformable tissues, we demonstrate the ability of our method to generate high quality plans in two medical-inspired scenarios: (1) guiding bevel-tip steerable needles through slices of deformable tissue around obstacles for minimally invasive biopsies and drug-delivery, and (2) manipulating planar tissues to align interior points at desired coordinates for precision treatment.</p>","PeriodicalId":87357,"journal":{"name":"Robotics science and systems : online proceedings","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2011-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096573/pdf/nihms-346279.pdf","citationCount":"52","resultStr":"{\"title\":\"Motion Planning Under Uncertainty In Highly Deformable Environments.\",\"authors\":\"Sachin Patil,&nbsp;Jur van den,&nbsp;Berg Ron Alterovitz\",\"doi\":\"10.15607/rss.2011.vii.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many tasks in robot-assisted surgery, food handling, manufacturing, and other applications require planning and controlling the motions of manipulators or other devices that must interact with highly deformable objects. We present a unified approach for motion planning under uncertainty in deformable environments that maximizes probability of success by accounting for uncertainty in deformation models, noisy sensing, and unpredictable actuation. Unlike prior planners that assume deterministic deformations or treat deformations as a type of small perturbation, our method explicitly considers the uncertainty in large, time-dependent deformations. Our method requires a simulator of deformable objects but places no significant restrictions on the simulator used. We use a sampling-based motion planner in conjunction with the simulator to generate a set of candidate plans based on expected deformations. Our method then uses the simulator and optimal control to numerically estimate time-dependent state distributions based on uncertain parameters (e.g. deformable material properties or actuation errors). We then select the plan with the highest estimated probability of successfully avoiding obstacles and reaching the goal region. Using FEM-based simulation of deformable tissues, we demonstrate the ability of our method to generate high quality plans in two medical-inspired scenarios: (1) guiding bevel-tip steerable needles through slices of deformable tissue around obstacles for minimally invasive biopsies and drug-delivery, and (2) manipulating planar tissues to align interior points at desired coordinates for precision treatment.</p>\",\"PeriodicalId\":87357,\"journal\":{\"name\":\"Robotics science and systems : online proceedings\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096573/pdf/nihms-346279.pdf\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics science and systems : online proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15607/rss.2011.vii.033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics science and systems : online proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/rss.2011.vii.033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

摘要

机器人辅助手术、食品处理、制造和其他应用中的许多任务都需要规划和控制操纵器或其他必须与高度可变形物体相互作用的设备的运动。我们提出了一种统一的方法,用于在变形环境中不确定的运动规划,通过考虑变形模型、噪声传感和不可预测的驱动的不确定性,最大限度地提高成功的概率。与先前的规划者假设确定性变形或将变形视为一种小扰动不同,我们的方法明确地考虑了大的、随时间变化的变形中的不确定性。我们的方法需要一个可变形对象的模拟器,但对所使用的模拟器没有明显的限制。我们将基于采样的运动规划器与模拟器结合使用,根据预期的变形生成一组候选计划。然后,我们的方法使用模拟器和最优控制来数值估计基于不确定参数(例如可变形材料特性或驱动误差)的时变状态分布。然后,我们选择成功避开障碍并到达目标区域的估计概率最高的计划。利用基于fem的可变形组织模拟,我们证明了我们的方法能够在两个医学启发的场景中生成高质量的计划:(1)引导斜尖可操纵针穿过障碍物周围的可变形组织切片,进行微创活检和药物输送;(2)操纵平面组织,使内部点在所需坐标上对齐,以进行精确治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Motion Planning Under Uncertainty In Highly Deformable Environments.

Many tasks in robot-assisted surgery, food handling, manufacturing, and other applications require planning and controlling the motions of manipulators or other devices that must interact with highly deformable objects. We present a unified approach for motion planning under uncertainty in deformable environments that maximizes probability of success by accounting for uncertainty in deformation models, noisy sensing, and unpredictable actuation. Unlike prior planners that assume deterministic deformations or treat deformations as a type of small perturbation, our method explicitly considers the uncertainty in large, time-dependent deformations. Our method requires a simulator of deformable objects but places no significant restrictions on the simulator used. We use a sampling-based motion planner in conjunction with the simulator to generate a set of candidate plans based on expected deformations. Our method then uses the simulator and optimal control to numerically estimate time-dependent state distributions based on uncertain parameters (e.g. deformable material properties or actuation errors). We then select the plan with the highest estimated probability of successfully avoiding obstacles and reaching the goal region. Using FEM-based simulation of deformable tissues, we demonstrate the ability of our method to generate high quality plans in two medical-inspired scenarios: (1) guiding bevel-tip steerable needles through slices of deformable tissue around obstacles for minimally invasive biopsies and drug-delivery, and (2) manipulating planar tissues to align interior points at desired coordinates for precision treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
0
期刊最新文献
Toward Certifiable Motion Planning for Medical Steerable Needles. Latent Belief Space Motion Planning under Cost, Dynamics, and Intent Uncertainty Efficient Parametric Multi-Fidelity Surface Mapping Learning of Sub-optimal Gait Controllers for Magnetic Walking Soft Millirobots. Toward Asymptotically-Optimal Inspection Planning via Efficient Near-Optimal Graph Search.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1