{"title":"分离纳米粒石竹对细菌和真菌的生物膜抑制作用。","authors":"Jeyachandran Sivakamavalli, Oyyappan Deepa, Baskaralingam Vaseeharan","doi":"10.3109/15419061.2014.926476","DOIUrl":null,"url":null,"abstract":"<p><p>Ruta graveolens silver nanoparticles (AgNPs) showed the color change within 30 min and characterized using UV-visible spectra, Fourier Transform Infrared (FTIR), X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). UV-visible spectrum of R. graveolens AgNPs showed the sharp peak at the wavelength of 440-560 nm. XRD patterns confirmed that crystalline nature of R. graveolens AgNPs and FTIR results revealed that phytochemical reaction of these R. graveolens is responsible for the synthesis of AgNPs. TEM results showed the size of the R. graveolens AgNPs around 30-50 nm with spherical and triangular nature. Further, the antibacterial and antibiofilm activity of R. graveolens AgNPs showed the effective inhibitory activity against clinically important Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. Our findings suggest that R. graveolens AgNPs can be exploited toward the development of potential antibacterial agents for various biomedical and environmental applications.</p>","PeriodicalId":55269,"journal":{"name":"Cell Communication and Adhesion","volume":"21 4","pages":"229-38"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/15419061.2014.926476","citationCount":"13","resultStr":"{\"title\":\"Discrete nanoparticles of ruta graveolens induces the bacterial and fungal biofilm inhibition.\",\"authors\":\"Jeyachandran Sivakamavalli, Oyyappan Deepa, Baskaralingam Vaseeharan\",\"doi\":\"10.3109/15419061.2014.926476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ruta graveolens silver nanoparticles (AgNPs) showed the color change within 30 min and characterized using UV-visible spectra, Fourier Transform Infrared (FTIR), X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). UV-visible spectrum of R. graveolens AgNPs showed the sharp peak at the wavelength of 440-560 nm. XRD patterns confirmed that crystalline nature of R. graveolens AgNPs and FTIR results revealed that phytochemical reaction of these R. graveolens is responsible for the synthesis of AgNPs. TEM results showed the size of the R. graveolens AgNPs around 30-50 nm with spherical and triangular nature. Further, the antibacterial and antibiofilm activity of R. graveolens AgNPs showed the effective inhibitory activity against clinically important Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. Our findings suggest that R. graveolens AgNPs can be exploited toward the development of potential antibacterial agents for various biomedical and environmental applications.</p>\",\"PeriodicalId\":55269,\"journal\":{\"name\":\"Cell Communication and Adhesion\",\"volume\":\"21 4\",\"pages\":\"229-38\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3109/15419061.2014.926476\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Communication and Adhesion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3109/15419061.2014.926476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Adhesion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/15419061.2014.926476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Discrete nanoparticles of ruta graveolens induces the bacterial and fungal biofilm inhibition.
Ruta graveolens silver nanoparticles (AgNPs) showed the color change within 30 min and characterized using UV-visible spectra, Fourier Transform Infrared (FTIR), X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). UV-visible spectrum of R. graveolens AgNPs showed the sharp peak at the wavelength of 440-560 nm. XRD patterns confirmed that crystalline nature of R. graveolens AgNPs and FTIR results revealed that phytochemical reaction of these R. graveolens is responsible for the synthesis of AgNPs. TEM results showed the size of the R. graveolens AgNPs around 30-50 nm with spherical and triangular nature. Further, the antibacterial and antibiofilm activity of R. graveolens AgNPs showed the effective inhibitory activity against clinically important Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. Our findings suggest that R. graveolens AgNPs can be exploited toward the development of potential antibacterial agents for various biomedical and environmental applications.
期刊介绍:
Cessation
Cell Communication and Adhesion is an international Open Access journal which provides a central forum for research on mechanisms underlying cellular signalling and adhesion. The journal provides a single source of information concerning all forms of cellular communication, cell junctions, adhesion molecules and families of receptors from diverse biological systems.
The journal welcomes submission of original research articles, reviews, short communications and conference reports.