{"title":"蟹对计算机生成的隐现和平移视觉危险刺激的逃生反应","authors":"Florencia Scarano, Daniel Tomsic","doi":"10.1016/j.jphysparis.2014.08.002","DOIUrl":null,"url":null,"abstract":"<div><p>Historically, arthropod behavior has been considered to be a collection of simple, automaton-like routines commanded by domain-specific brain modules working independently. Nowadays, it is evident that the extensive behavioral repertoire of these animals and its flexibility necessarily imply far more complex abilities than originally assumed. For example, even what was thought to be a straightforward behavior of crabs, the escape response to visual danger stimuli, proved to involve a number of sequential stages, each of which implying decisions made on the bases of stimulus and contextual information. Inspired in previous observations on how the stimulus trajectory can affect the escape response of crabs in the field, we investigated the escape response to images of objects approaching directly toward the crab (looming stimuli: LS) or moving parallel to it (translational stimuli: TS) in the laboratory. Computer simulations of moving objects were effective to elicit escapes. LS evoked escapes with higher probability and intensity (speed and distance of escape) than TS, but responses started later. In addition to the escape run, TS also evoked a defensive response of the animal with its claws. Repeated presentations of TS or LS were both capable of inducing habituation. Results are discussed in connection with the possibilities offered by crabs to investigate the neural bases of behaviors occurring in the natural environment.</p></div>","PeriodicalId":50087,"journal":{"name":"Journal of Physiology-Paris","volume":"108 2","pages":"Pages 141-147"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jphysparis.2014.08.002","citationCount":"16","resultStr":"{\"title\":\"Escape response of the crab Neohelice to computer generated looming and translational visual danger stimuli\",\"authors\":\"Florencia Scarano, Daniel Tomsic\",\"doi\":\"10.1016/j.jphysparis.2014.08.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Historically, arthropod behavior has been considered to be a collection of simple, automaton-like routines commanded by domain-specific brain modules working independently. Nowadays, it is evident that the extensive behavioral repertoire of these animals and its flexibility necessarily imply far more complex abilities than originally assumed. For example, even what was thought to be a straightforward behavior of crabs, the escape response to visual danger stimuli, proved to involve a number of sequential stages, each of which implying decisions made on the bases of stimulus and contextual information. Inspired in previous observations on how the stimulus trajectory can affect the escape response of crabs in the field, we investigated the escape response to images of objects approaching directly toward the crab (looming stimuli: LS) or moving parallel to it (translational stimuli: TS) in the laboratory. Computer simulations of moving objects were effective to elicit escapes. LS evoked escapes with higher probability and intensity (speed and distance of escape) than TS, but responses started later. In addition to the escape run, TS also evoked a defensive response of the animal with its claws. Repeated presentations of TS or LS were both capable of inducing habituation. Results are discussed in connection with the possibilities offered by crabs to investigate the neural bases of behaviors occurring in the natural environment.</p></div>\",\"PeriodicalId\":50087,\"journal\":{\"name\":\"Journal of Physiology-Paris\",\"volume\":\"108 2\",\"pages\":\"Pages 141-147\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jphysparis.2014.08.002\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physiology-Paris\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0928425714000369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiology-Paris","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928425714000369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Medicine","Score":null,"Total":0}
Escape response of the crab Neohelice to computer generated looming and translational visual danger stimuli
Historically, arthropod behavior has been considered to be a collection of simple, automaton-like routines commanded by domain-specific brain modules working independently. Nowadays, it is evident that the extensive behavioral repertoire of these animals and its flexibility necessarily imply far more complex abilities than originally assumed. For example, even what was thought to be a straightforward behavior of crabs, the escape response to visual danger stimuli, proved to involve a number of sequential stages, each of which implying decisions made on the bases of stimulus and contextual information. Inspired in previous observations on how the stimulus trajectory can affect the escape response of crabs in the field, we investigated the escape response to images of objects approaching directly toward the crab (looming stimuli: LS) or moving parallel to it (translational stimuli: TS) in the laboratory. Computer simulations of moving objects were effective to elicit escapes. LS evoked escapes with higher probability and intensity (speed and distance of escape) than TS, but responses started later. In addition to the escape run, TS also evoked a defensive response of the animal with its claws. Repeated presentations of TS or LS were both capable of inducing habituation. Results are discussed in connection with the possibilities offered by crabs to investigate the neural bases of behaviors occurring in the natural environment.
期刊介绍:
Each issue of the Journal of Physiology (Paris) is specially commissioned, and provides an overview of one important area of neuroscience, delivering review and research papers from leading researchers in that field. The content will interest both those specializing in the experimental study of the brain and those working in interdisciplinary fields linking theory and biological data, including cellular neuroscience, mathematical analysis of brain function, computational neuroscience, biophysics of brain imaging and cognitive psychology.