Leonel Gómez-Sena, Federico Pedraja , Juan I. Sanguinetti-Scheck , Ruben Budelli
{"title":"弱电鱼的电成像计算模型:生理学、行为和进化的见解","authors":"Leonel Gómez-Sena, Federico Pedraja , Juan I. Sanguinetti-Scheck , Ruben Budelli","doi":"10.1016/j.jphysparis.2014.08.009","DOIUrl":null,"url":null,"abstract":"<div><p>Weakly electric fish can sense electric signals produced by other animals whether they are conspecifics, preys or predators. These signals, sensed by passive electroreception, sustain electrocommunication, mating and agonistic behavior<span>. Weakly electric fish can also generate a weak electrical discharge with which they can actively sense the animate and inanimate objects in their surroundings. Understanding both sensory modalities depends on our knowledge of how pre-receptorial electric images are formed and how movements modify them during behavior<span>. The inability of effectively measuring pre-receptorial fields at the level of the skin contrasts with the amount of knowledge on electric fields and the availability of computational methods for estimating them. In this work we review past work on modeling of electric organ discharge and electric images, showing the usefulness of these methods to calculate the field and providing a brief explanation of their principles. In addition, we focus on recent work demonstrating the potential of electric image modeling and what the method has to offer for experimentalists studying sensory physiology, behavior and evolution.</span></span></p></div>","PeriodicalId":50087,"journal":{"name":"Journal of Physiology-Paris","volume":"108 2","pages":"Pages 112-128"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jphysparis.2014.08.009","citationCount":"11","resultStr":"{\"title\":\"Computational modeling of electric imaging in weakly electric fish: Insights for physiology, behavior and evolution\",\"authors\":\"Leonel Gómez-Sena, Federico Pedraja , Juan I. Sanguinetti-Scheck , Ruben Budelli\",\"doi\":\"10.1016/j.jphysparis.2014.08.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Weakly electric fish can sense electric signals produced by other animals whether they are conspecifics, preys or predators. These signals, sensed by passive electroreception, sustain electrocommunication, mating and agonistic behavior<span>. Weakly electric fish can also generate a weak electrical discharge with which they can actively sense the animate and inanimate objects in their surroundings. Understanding both sensory modalities depends on our knowledge of how pre-receptorial electric images are formed and how movements modify them during behavior<span>. The inability of effectively measuring pre-receptorial fields at the level of the skin contrasts with the amount of knowledge on electric fields and the availability of computational methods for estimating them. In this work we review past work on modeling of electric organ discharge and electric images, showing the usefulness of these methods to calculate the field and providing a brief explanation of their principles. In addition, we focus on recent work demonstrating the potential of electric image modeling and what the method has to offer for experimentalists studying sensory physiology, behavior and evolution.</span></span></p></div>\",\"PeriodicalId\":50087,\"journal\":{\"name\":\"Journal of Physiology-Paris\",\"volume\":\"108 2\",\"pages\":\"Pages 112-128\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jphysparis.2014.08.009\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physiology-Paris\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0928425714000436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiology-Paris","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928425714000436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Medicine","Score":null,"Total":0}
Computational modeling of electric imaging in weakly electric fish: Insights for physiology, behavior and evolution
Weakly electric fish can sense electric signals produced by other animals whether they are conspecifics, preys or predators. These signals, sensed by passive electroreception, sustain electrocommunication, mating and agonistic behavior. Weakly electric fish can also generate a weak electrical discharge with which they can actively sense the animate and inanimate objects in their surroundings. Understanding both sensory modalities depends on our knowledge of how pre-receptorial electric images are formed and how movements modify them during behavior. The inability of effectively measuring pre-receptorial fields at the level of the skin contrasts with the amount of knowledge on electric fields and the availability of computational methods for estimating them. In this work we review past work on modeling of electric organ discharge and electric images, showing the usefulness of these methods to calculate the field and providing a brief explanation of their principles. In addition, we focus on recent work demonstrating the potential of electric image modeling and what the method has to offer for experimentalists studying sensory physiology, behavior and evolution.
期刊介绍:
Each issue of the Journal of Physiology (Paris) is specially commissioned, and provides an overview of one important area of neuroscience, delivering review and research papers from leading researchers in that field. The content will interest both those specializing in the experimental study of the brain and those working in interdisciplinary fields linking theory and biological data, including cellular neuroscience, mathematical analysis of brain function, computational neuroscience, biophysics of brain imaging and cognitive psychology.