Hermann Wolter , Maria Colonna , Dan Cozma , Pawel Danielewicz , Che Ming Ko , Rohit Kumar , Akira Ono , ManYee Betty Tsang , Jun Xu , Ying-Xun Zhang , Elena Bratkovskaya , Zhao-Qing Feng , Theodoros Gaitanos , Arnaud Le Fèvre , Natsumi Ikeno , Youngman Kim , Swagata Mallik , Paolo Napolitani , Dmytro Oliinychenko , Tatsuhiko Ogawa , Wen-Jie Xie
{"title":"中能量重离子碰撞输运模型比较研究","authors":"Hermann Wolter , Maria Colonna , Dan Cozma , Pawel Danielewicz , Che Ming Ko , Rohit Kumar , Akira Ono , ManYee Betty Tsang , Jun Xu , Ying-Xun Zhang , Elena Bratkovskaya , Zhao-Qing Feng , Theodoros Gaitanos , Arnaud Le Fèvre , Natsumi Ikeno , Youngman Kim , Swagata Mallik , Paolo Napolitani , Dmytro Oliinychenko , Tatsuhiko Ogawa , Wen-Jie Xie","doi":"10.1016/j.ppnp.2022.103962","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Transport models are the main method to obtain physics information on the nuclear </span>equation of state and in-medium properties of particles from low to relativistic-energy heavy-ion collisions. The Transport Model Evaluation Project (TMEP) has been pursued to test the robustness of transport model predictions in reaching consistent conclusions from the same type of physical model. To this end, calculations under controlled conditions of physical input and set-up were performed with various participating codes. These included both calculations of nuclear matter in a box with </span>periodic boundary conditions<span>, which test separately selected ingredients of a transport code, and more realistic calculations of heavy-ion collisions. Over the years, six studies have been performed within this project. In this intermediate review, we summarize and discuss the present status of the project. We also provide condensed descriptions of the 26 participating codes, which contributed to some part of the project. These include the major codes in use today. After a compact description of the underlying transport approaches, we review the main results of the studies completed so far. They show, that in box calculations the differences between the codes can be well understood and a convergence of the results can be reached. These studies also highlight the systematic differences between the two families of transport codes, known under the names of Boltzmann–Uehling–Uhlenbeck (BUU) and Quantum Molecular Dynamics (QMD) type codes. However, when the codes were compared in full heavy-ion collisions using different physical models, as recently for pion production, they still yielded substantially different results. This calls for further comparisons of heavy-ion collisions with controlled models and of box comparisons of important ingredients, like momentum-dependent fields, which are currently underway. Our evaluation studies often indicate improved strategies in performing transport simulations and thus can provide guidance to code developers. Results of transport simulations of heavy-ion collisions from a given code will have more significance if the code can be validated against benchmark calculations such as the ones summarized in this review.</span></p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":"125 ","pages":"Article 103962"},"PeriodicalIF":14.5000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Transport model comparison studies of intermediate-energy heavy-ion collisions\",\"authors\":\"Hermann Wolter , Maria Colonna , Dan Cozma , Pawel Danielewicz , Che Ming Ko , Rohit Kumar , Akira Ono , ManYee Betty Tsang , Jun Xu , Ying-Xun Zhang , Elena Bratkovskaya , Zhao-Qing Feng , Theodoros Gaitanos , Arnaud Le Fèvre , Natsumi Ikeno , Youngman Kim , Swagata Mallik , Paolo Napolitani , Dmytro Oliinychenko , Tatsuhiko Ogawa , Wen-Jie Xie\",\"doi\":\"10.1016/j.ppnp.2022.103962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Transport models are the main method to obtain physics information on the nuclear </span>equation of state and in-medium properties of particles from low to relativistic-energy heavy-ion collisions. The Transport Model Evaluation Project (TMEP) has been pursued to test the robustness of transport model predictions in reaching consistent conclusions from the same type of physical model. To this end, calculations under controlled conditions of physical input and set-up were performed with various participating codes. These included both calculations of nuclear matter in a box with </span>periodic boundary conditions<span>, which test separately selected ingredients of a transport code, and more realistic calculations of heavy-ion collisions. Over the years, six studies have been performed within this project. In this intermediate review, we summarize and discuss the present status of the project. We also provide condensed descriptions of the 26 participating codes, which contributed to some part of the project. These include the major codes in use today. After a compact description of the underlying transport approaches, we review the main results of the studies completed so far. They show, that in box calculations the differences between the codes can be well understood and a convergence of the results can be reached. These studies also highlight the systematic differences between the two families of transport codes, known under the names of Boltzmann–Uehling–Uhlenbeck (BUU) and Quantum Molecular Dynamics (QMD) type codes. However, when the codes were compared in full heavy-ion collisions using different physical models, as recently for pion production, they still yielded substantially different results. This calls for further comparisons of heavy-ion collisions with controlled models and of box comparisons of important ingredients, like momentum-dependent fields, which are currently underway. Our evaluation studies often indicate improved strategies in performing transport simulations and thus can provide guidance to code developers. Results of transport simulations of heavy-ion collisions from a given code will have more significance if the code can be validated against benchmark calculations such as the ones summarized in this review.</span></p></div>\",\"PeriodicalId\":412,\"journal\":{\"name\":\"Progress in Particle and Nuclear Physics\",\"volume\":\"125 \",\"pages\":\"Article 103962\"},\"PeriodicalIF\":14.5000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Particle and Nuclear Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0146641022000230\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Particle and Nuclear Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0146641022000230","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
Transport model comparison studies of intermediate-energy heavy-ion collisions
Transport models are the main method to obtain physics information on the nuclear equation of state and in-medium properties of particles from low to relativistic-energy heavy-ion collisions. The Transport Model Evaluation Project (TMEP) has been pursued to test the robustness of transport model predictions in reaching consistent conclusions from the same type of physical model. To this end, calculations under controlled conditions of physical input and set-up were performed with various participating codes. These included both calculations of nuclear matter in a box with periodic boundary conditions, which test separately selected ingredients of a transport code, and more realistic calculations of heavy-ion collisions. Over the years, six studies have been performed within this project. In this intermediate review, we summarize and discuss the present status of the project. We also provide condensed descriptions of the 26 participating codes, which contributed to some part of the project. These include the major codes in use today. After a compact description of the underlying transport approaches, we review the main results of the studies completed so far. They show, that in box calculations the differences between the codes can be well understood and a convergence of the results can be reached. These studies also highlight the systematic differences between the two families of transport codes, known under the names of Boltzmann–Uehling–Uhlenbeck (BUU) and Quantum Molecular Dynamics (QMD) type codes. However, when the codes were compared in full heavy-ion collisions using different physical models, as recently for pion production, they still yielded substantially different results. This calls for further comparisons of heavy-ion collisions with controlled models and of box comparisons of important ingredients, like momentum-dependent fields, which are currently underway. Our evaluation studies often indicate improved strategies in performing transport simulations and thus can provide guidance to code developers. Results of transport simulations of heavy-ion collisions from a given code will have more significance if the code can be validated against benchmark calculations such as the ones summarized in this review.
期刊介绍:
Taking the format of four issues per year, the journal Progress in Particle and Nuclear Physics aims to discuss new developments in the field at a level suitable for the general nuclear and particle physicist and, in greater technical depth, to explore the most important advances in these areas. Most of the articles will be in one of the fields of nuclear physics, hadron physics, heavy ion physics, particle physics, as well as astrophysics and cosmology. A particular effort is made to treat topics of an interface type for which both particle and nuclear physics are important. Related topics such as detector physics, accelerator physics or the application of nuclear physics in the medical and archaeological fields will also be treated from time to time.