学习蛋白质折叠能量函数。

Wei Guan, Arkadas Ozakin, Alexander Gray, Jose Borreguero, Shashi Pandit, Anna Jagielska, Liliana Wroblewska, Jeffrey Skolnick
{"title":"学习蛋白质折叠能量函数。","authors":"Wei Guan,&nbsp;Arkadas Ozakin,&nbsp;Alexander Gray,&nbsp;Jose Borreguero,&nbsp;Shashi Pandit,&nbsp;Anna Jagielska,&nbsp;Liliana Wroblewska,&nbsp;Jeffrey Skolnick","doi":"10.1109/ICDM.2011.88","DOIUrl":null,"url":null,"abstract":"<p><p>A critical open problem in <i>ab initio</i> protein folding is protein energy function design, which pertains to defining the energy of protein conformations in a way that makes folding most efficient and reliable. In this paper, we address this issue as a weight optimization problem and utilize a machine learning approach, learning-to-rank, to solve this problem. We investigate the ranking-via-classification approach, especially the RankingSVM method and compare it with the state-of-the-art approach to the problem using the MINUIT optimization package. To maintain the physicality of the results, we impose non-negativity constraints on the weights. For this we develop two efficient non-negative support vector machine (NNSVM) methods, derived from L2-norm SVM and L1-norm SVMs, respectively. We demonstrate an energy function which maintains the correct ordering with respect to structure dissimilarity to the native state more often, is more efficient and reliable for learning on large protein sets, and is qualitatively superior to the current state-of-the-art energy function.</p>","PeriodicalId":74565,"journal":{"name":"Proceedings. IEEE International Conference on Data Mining","volume":" ","pages":"1062-1067"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ICDM.2011.88","citationCount":"8","resultStr":"{\"title\":\"Learning Protein Folding Energy Functions.\",\"authors\":\"Wei Guan,&nbsp;Arkadas Ozakin,&nbsp;Alexander Gray,&nbsp;Jose Borreguero,&nbsp;Shashi Pandit,&nbsp;Anna Jagielska,&nbsp;Liliana Wroblewska,&nbsp;Jeffrey Skolnick\",\"doi\":\"10.1109/ICDM.2011.88\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A critical open problem in <i>ab initio</i> protein folding is protein energy function design, which pertains to defining the energy of protein conformations in a way that makes folding most efficient and reliable. In this paper, we address this issue as a weight optimization problem and utilize a machine learning approach, learning-to-rank, to solve this problem. We investigate the ranking-via-classification approach, especially the RankingSVM method and compare it with the state-of-the-art approach to the problem using the MINUIT optimization package. To maintain the physicality of the results, we impose non-negativity constraints on the weights. For this we develop two efficient non-negative support vector machine (NNSVM) methods, derived from L2-norm SVM and L1-norm SVMs, respectively. We demonstrate an energy function which maintains the correct ordering with respect to structure dissimilarity to the native state more often, is more efficient and reliable for learning on large protein sets, and is qualitatively superior to the current state-of-the-art energy function.</p>\",\"PeriodicalId\":74565,\"journal\":{\"name\":\"Proceedings. IEEE International Conference on Data Mining\",\"volume\":\" \",\"pages\":\"1062-1067\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/ICDM.2011.88\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2011.88\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2011.88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

从头算蛋白质折叠中的一个关键开放问题是蛋白质能量函数设计,它涉及到以一种使折叠最有效和可靠的方式定义蛋白质构象的能量。在本文中,我们将这个问题作为一个权重优化问题来解决,并利用机器学习方法,学习排序,来解决这个问题。我们研究了通过分类进行排序的方法,特别是RankingSVM方法,并将其与使用MINUIT优化包的最先进方法进行了比较。为了保持结果的物质性,我们对权重施加非负性约束。为此,我们开发了两种高效的非负支持向量机(NNSVM)方法,分别来源于l2范数支持向量机和l1范数支持向量机。我们展示了一种能量函数,它可以更频繁地保持与原始状态结构不相似的正确顺序,对于大型蛋白质集的学习更有效和可靠,并且在质量上优于当前最先进的能量函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning Protein Folding Energy Functions.

A critical open problem in ab initio protein folding is protein energy function design, which pertains to defining the energy of protein conformations in a way that makes folding most efficient and reliable. In this paper, we address this issue as a weight optimization problem and utilize a machine learning approach, learning-to-rank, to solve this problem. We investigate the ranking-via-classification approach, especially the RankingSVM method and compare it with the state-of-the-art approach to the problem using the MINUIT optimization package. To maintain the physicality of the results, we impose non-negativity constraints on the weights. For this we develop two efficient non-negative support vector machine (NNSVM) methods, derived from L2-norm SVM and L1-norm SVMs, respectively. We demonstrate an energy function which maintains the correct ordering with respect to structure dissimilarity to the native state more often, is more efficient and reliable for learning on large protein sets, and is qualitatively superior to the current state-of-the-art energy function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Personalized Healthcare via Capturing Disease Severity, Interaction, and Progression. Heterogeneous Treatment Effect Estimation with Subpopulation Identification for Personalized Medicine in Opioid Use Disorder. RoS-KD: A Robust Stochastic Knowledge Distillation Approach for Noisy Medical Imaging. Robust Unsupervised Domain Adaptation from A Corrupted Source. Communication Efficient Tensor Factorization for Decentralized Healthcare Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1