无序语言评价的分布语义模型。

Masoud Rouhizadeh, Emily Prud'hommeaux, Brian Roark, Jan van Santen
{"title":"无序语言评价的分布语义模型。","authors":"Masoud Rouhizadeh,&nbsp;Emily Prud'hommeaux,&nbsp;Brian Roark,&nbsp;Jan van Santen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Atypical semantic and pragmatic expression is frequently reported in the language of children with autism. Although this atypicality often manifests itself in the use of unusual or unexpected words and phrases, the rate of use of such unexpected words is rarely directly measured or quantified. In this paper, we use distributional semantic models to automatically identify unexpected words in narrative retellings by children with autism. The classification of unexpected words is sufficiently accurate to distinguish the retellings of children with autism from those with typical development. These techniques demonstrate the potential of applying automated language analysis techniques to clinically elicited language data for diagnostic purposes.</p>","PeriodicalId":74542,"journal":{"name":"Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting","volume":"2013 ","pages":"709-714"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4237315/pdf/nihms504421.pdf","citationCount":"0","resultStr":"{\"title\":\"Distributional semantic models for the evaluation of disordered language.\",\"authors\":\"Masoud Rouhizadeh,&nbsp;Emily Prud'hommeaux,&nbsp;Brian Roark,&nbsp;Jan van Santen\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Atypical semantic and pragmatic expression is frequently reported in the language of children with autism. Although this atypicality often manifests itself in the use of unusual or unexpected words and phrases, the rate of use of such unexpected words is rarely directly measured or quantified. In this paper, we use distributional semantic models to automatically identify unexpected words in narrative retellings by children with autism. The classification of unexpected words is sufficiently accurate to distinguish the retellings of children with autism from those with typical development. These techniques demonstrate the potential of applying automated language analysis techniques to clinically elicited language data for diagnostic purposes.</p>\",\"PeriodicalId\":74542,\"journal\":{\"name\":\"Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting\",\"volume\":\"2013 \",\"pages\":\"709-714\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4237315/pdf/nihms504421.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

非典型语义和语用表达在自闭症儿童的语言中经常被报道。尽管这种非典型性经常表现在使用不寻常或意想不到的单词和短语上,但这些意想不到的单词的使用频率很少被直接测量或量化。本文采用分布语义模型对自闭症儿童复述中的意外词进行自动识别。对意外单词的分类足够准确,可以区分自闭症儿童和正常发育儿童的复述。这些技术展示了将自动语言分析技术应用于临床提取的语言数据以用于诊断目的的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distributional semantic models for the evaluation of disordered language.

Atypical semantic and pragmatic expression is frequently reported in the language of children with autism. Although this atypicality often manifests itself in the use of unusual or unexpected words and phrases, the rate of use of such unexpected words is rarely directly measured or quantified. In this paper, we use distributional semantic models to automatically identify unexpected words in narrative retellings by children with autism. The classification of unexpected words is sufficiently accurate to distinguish the retellings of children with autism from those with typical development. These techniques demonstrate the potential of applying automated language analysis techniques to clinically elicited language data for diagnostic purposes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ODD: A Benchmark Dataset for the Natural Language Processing Based Opioid Related Aberrant Behavior Detection. Towards Reducing Diagnostic Errors with Interpretable Risk Prediction. ScAN: Suicide Attempt and Ideation Events Dataset. ScAN: Suicide Attempt and Ideation Events Dataset Translational NLP: A New Paradigm and General Principles for Natural Language Processing Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1