{"title":"采用高效液相色谱法测定番泻子和番泻叶中番泻苷A和B的含量。","authors":"Immanuel Rosenthal, Evelyn Wolfram, Beat Meier","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The current Ph. Eur. monographs for senna pods, senna leaf and senna leaf dry extract standardised describe a photometric assay based on the Bornträger reaction to determine hydroxyanthracene glycosides, calculated as sennoside B. The method is timeconsuming, unspecific for sennosides and the precision is not adequate for a modern assay.</p><p><strong>Aim: </strong>The photometric method shall therefore be replaced by a modern HPLC method. About 70 % of the total anthrachinone content in herbal drugs of senna species is due to sennoside A and sennoside B. These substances are therefore suitable for the standardisation of Senna products. The Japanese Pharmacopoeia (JP) already describes an HPLC method to determine sennoside A and sennoside B in the monograph for senna leaf. It uses ion-pair chromatography with tetraheptylammoniumbromide. The procedure described in the monograph has a runtime of 70 min.</p><p><strong>Method: </strong>The adapted and validated method described here uses solid-phase extraction (SPE) which allows a selective sample preparation by using an anion exchange phase. A conventional RP C18 column Tosh TSKgel ODS-80TS (4.6 mm × 150 mm), 5 μm, was used as stationary phase and acetonitrile for chromatography R, water R, phosphoric acid R (200:800:1 V/V/V) as mobile phase. The flow rate was 1.2 mL/min, the column temperature 40 °C, the detection wavelength 380 nm, and the injection volume 20 μL. The runtime is 10 min, the chromatogram shows 2 peaks due to sennoside A/B and 2 additional smaller compounds. One of them is rhein-8-O-glucoside.</p><p><strong>Results: </strong>The procedure has been successfully validated according to ICH guidelines. We analysed 6 batches of Senna. The pods (Senna angustifolia) showed a total content of sennoside A and B of 1.74-2.76 % m/m and the content of senna leaves was clearly lower with 1.07-1.19 % m/m, respectively.</p><p><strong>Conclusion: </strong>The suggested method is considered to be suitable to determine sennoside A and sennoside B in senna leaves and senna pods. The consideration is based on the performed validation and on the results for the analysed samples. A short run time and better resolution are clear advantages of the suggested method, compared to other methods.</p>","PeriodicalId":39192,"journal":{"name":"Pharmeuropa bio & scientific notes","volume":"2014 ","pages":"92-102"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An HPLC method to determine sennoside A and sennoside B in Sennae fructus and Sennae folium.\",\"authors\":\"Immanuel Rosenthal, Evelyn Wolfram, Beat Meier\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>The current Ph. Eur. monographs for senna pods, senna leaf and senna leaf dry extract standardised describe a photometric assay based on the Bornträger reaction to determine hydroxyanthracene glycosides, calculated as sennoside B. The method is timeconsuming, unspecific for sennosides and the precision is not adequate for a modern assay.</p><p><strong>Aim: </strong>The photometric method shall therefore be replaced by a modern HPLC method. About 70 % of the total anthrachinone content in herbal drugs of senna species is due to sennoside A and sennoside B. These substances are therefore suitable for the standardisation of Senna products. The Japanese Pharmacopoeia (JP) already describes an HPLC method to determine sennoside A and sennoside B in the monograph for senna leaf. It uses ion-pair chromatography with tetraheptylammoniumbromide. The procedure described in the monograph has a runtime of 70 min.</p><p><strong>Method: </strong>The adapted and validated method described here uses solid-phase extraction (SPE) which allows a selective sample preparation by using an anion exchange phase. A conventional RP C18 column Tosh TSKgel ODS-80TS (4.6 mm × 150 mm), 5 μm, was used as stationary phase and acetonitrile for chromatography R, water R, phosphoric acid R (200:800:1 V/V/V) as mobile phase. The flow rate was 1.2 mL/min, the column temperature 40 °C, the detection wavelength 380 nm, and the injection volume 20 μL. The runtime is 10 min, the chromatogram shows 2 peaks due to sennoside A/B and 2 additional smaller compounds. One of them is rhein-8-O-glucoside.</p><p><strong>Results: </strong>The procedure has been successfully validated according to ICH guidelines. We analysed 6 batches of Senna. The pods (Senna angustifolia) showed a total content of sennoside A and B of 1.74-2.76 % m/m and the content of senna leaves was clearly lower with 1.07-1.19 % m/m, respectively.</p><p><strong>Conclusion: </strong>The suggested method is considered to be suitable to determine sennoside A and sennoside B in senna leaves and senna pods. The consideration is based on the performed validation and on the results for the analysed samples. A short run time and better resolution are clear advantages of the suggested method, compared to other methods.</p>\",\"PeriodicalId\":39192,\"journal\":{\"name\":\"Pharmeuropa bio & scientific notes\",\"volume\":\"2014 \",\"pages\":\"92-102\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmeuropa bio & scientific notes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmeuropa bio & scientific notes","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
An HPLC method to determine sennoside A and sennoside B in Sennae fructus and Sennae folium.
Introduction: The current Ph. Eur. monographs for senna pods, senna leaf and senna leaf dry extract standardised describe a photometric assay based on the Bornträger reaction to determine hydroxyanthracene glycosides, calculated as sennoside B. The method is timeconsuming, unspecific for sennosides and the precision is not adequate for a modern assay.
Aim: The photometric method shall therefore be replaced by a modern HPLC method. About 70 % of the total anthrachinone content in herbal drugs of senna species is due to sennoside A and sennoside B. These substances are therefore suitable for the standardisation of Senna products. The Japanese Pharmacopoeia (JP) already describes an HPLC method to determine sennoside A and sennoside B in the monograph for senna leaf. It uses ion-pair chromatography with tetraheptylammoniumbromide. The procedure described in the monograph has a runtime of 70 min.
Method: The adapted and validated method described here uses solid-phase extraction (SPE) which allows a selective sample preparation by using an anion exchange phase. A conventional RP C18 column Tosh TSKgel ODS-80TS (4.6 mm × 150 mm), 5 μm, was used as stationary phase and acetonitrile for chromatography R, water R, phosphoric acid R (200:800:1 V/V/V) as mobile phase. The flow rate was 1.2 mL/min, the column temperature 40 °C, the detection wavelength 380 nm, and the injection volume 20 μL. The runtime is 10 min, the chromatogram shows 2 peaks due to sennoside A/B and 2 additional smaller compounds. One of them is rhein-8-O-glucoside.
Results: The procedure has been successfully validated according to ICH guidelines. We analysed 6 batches of Senna. The pods (Senna angustifolia) showed a total content of sennoside A and B of 1.74-2.76 % m/m and the content of senna leaves was clearly lower with 1.07-1.19 % m/m, respectively.
Conclusion: The suggested method is considered to be suitable to determine sennoside A and sennoside B in senna leaves and senna pods. The consideration is based on the performed validation and on the results for the analysed samples. A short run time and better resolution are clear advantages of the suggested method, compared to other methods.