动觉运动意象是如何工作的:运动和运动专业知识中可视化的预测加工理论

K. Richard Ridderinkhof , Marcel Brass
{"title":"动觉运动意象是如何工作的:运动和运动专业知识中可视化的预测加工理论","authors":"K. Richard Ridderinkhof ,&nbsp;Marcel Brass","doi":"10.1016/j.jphysparis.2015.02.003","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Kinesthetic Motor Imagery (KMI) is an important technique to acquire and refine motor skills. KMI is widely used by professional athletes as an effective way to improve motor performance without overt motor output. Despite this obvious relevance, the functional mechanisms and neural circuits involved in KMI in sports are still poorly understood. In the present article, which aims at bridging the sport sciences and cognitive </span>neurophysiology literatures, we give a brief overview of relevant research in the field of KMI. Furthermore, we develop a theoretical account that relates KMI to predictive motor control theories assuming that it is based on internal activation of anticipatory images of action effects. This mechanism allows improving motor performance solely based on internal emulation of action. In accordance with previous literature, we propose that this emulation mechanism is implemented in brain regions that partially overlap with brain areas involved in overt motor performance including the </span>posterior parietal cortex, the </span>cerebellum<span>, the basal ganglia and the premotor cortex. Finally, we outline one way to test the heuristic value of our theoretical framework for KMI; we suggest that experience with motor performance improves the ability to correctly infer the goals of others, in particular in penalty blocking in soccer.</span></p></div>","PeriodicalId":50087,"journal":{"name":"Journal of Physiology-Paris","volume":"109 1","pages":"Pages 53-63"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jphysparis.2015.02.003","citationCount":"125","resultStr":"{\"title\":\"How Kinesthetic Motor Imagery works: A predictive-processing theory of visualization in sports and motor expertise\",\"authors\":\"K. Richard Ridderinkhof ,&nbsp;Marcel Brass\",\"doi\":\"10.1016/j.jphysparis.2015.02.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>Kinesthetic Motor Imagery (KMI) is an important technique to acquire and refine motor skills. KMI is widely used by professional athletes as an effective way to improve motor performance without overt motor output. Despite this obvious relevance, the functional mechanisms and neural circuits involved in KMI in sports are still poorly understood. In the present article, which aims at bridging the sport sciences and cognitive </span>neurophysiology literatures, we give a brief overview of relevant research in the field of KMI. Furthermore, we develop a theoretical account that relates KMI to predictive motor control theories assuming that it is based on internal activation of anticipatory images of action effects. This mechanism allows improving motor performance solely based on internal emulation of action. In accordance with previous literature, we propose that this emulation mechanism is implemented in brain regions that partially overlap with brain areas involved in overt motor performance including the </span>posterior parietal cortex, the </span>cerebellum<span>, the basal ganglia and the premotor cortex. Finally, we outline one way to test the heuristic value of our theoretical framework for KMI; we suggest that experience with motor performance improves the ability to correctly infer the goals of others, in particular in penalty blocking in soccer.</span></p></div>\",\"PeriodicalId\":50087,\"journal\":{\"name\":\"Journal of Physiology-Paris\",\"volume\":\"109 1\",\"pages\":\"Pages 53-63\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jphysparis.2015.02.003\",\"citationCount\":\"125\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physiology-Paris\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0928425715000066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiology-Paris","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928425715000066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 125

摘要

动觉运动意象(KMI)是获得和完善运动技能的一项重要技术。KMI作为一种没有明显运动输出的提高运动表现的有效方法被专业运动员广泛使用。尽管有这种明显的相关性,但运动中KMI的功能机制和神经回路仍然知之甚少。在本文中,我们旨在连接运动科学和认知神经生理学的文献,简要概述了KMI领域的相关研究。此外,我们发展了一个理论帐户,将KMI与预测运动控制理论联系起来,假设它是基于动作效果的预期图像的内部激活。这种机制允许仅基于内部动作仿真来改善电机性能。根据先前的文献,我们提出这种模拟机制是在与参与显性运动表现的大脑区域部分重叠的大脑区域实现的,包括后顶叶皮层、小脑、基底神经节和运动前皮层。最后,我们概述了一种方法来测试我们的理论框架的启发式价值的KMI;我们认为,运动表现的经验提高了正确推断他人进球的能力,特别是在足球中的点球拦截。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
How Kinesthetic Motor Imagery works: A predictive-processing theory of visualization in sports and motor expertise

Kinesthetic Motor Imagery (KMI) is an important technique to acquire and refine motor skills. KMI is widely used by professional athletes as an effective way to improve motor performance without overt motor output. Despite this obvious relevance, the functional mechanisms and neural circuits involved in KMI in sports are still poorly understood. In the present article, which aims at bridging the sport sciences and cognitive neurophysiology literatures, we give a brief overview of relevant research in the field of KMI. Furthermore, we develop a theoretical account that relates KMI to predictive motor control theories assuming that it is based on internal activation of anticipatory images of action effects. This mechanism allows improving motor performance solely based on internal emulation of action. In accordance with previous literature, we propose that this emulation mechanism is implemented in brain regions that partially overlap with brain areas involved in overt motor performance including the posterior parietal cortex, the cerebellum, the basal ganglia and the premotor cortex. Finally, we outline one way to test the heuristic value of our theoretical framework for KMI; we suggest that experience with motor performance improves the ability to correctly infer the goals of others, in particular in penalty blocking in soccer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physiology-Paris
Journal of Physiology-Paris 医学-神经科学
CiteScore
2.02
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Each issue of the Journal of Physiology (Paris) is specially commissioned, and provides an overview of one important area of neuroscience, delivering review and research papers from leading researchers in that field. The content will interest both those specializing in the experimental study of the brain and those working in interdisciplinary fields linking theory and biological data, including cellular neuroscience, mathematical analysis of brain function, computational neuroscience, biophysics of brain imaging and cognitive psychology.
期刊最新文献
Editorial Automated detection of high-frequency oscillations in electrophysiological signals: Methodological advances Digital hardware implementation of a stochastic two-dimensional neuron model Recent progress in multi-electrode spike sorting methods Retrospectively supervised click decoder calibration for self-calibrating point-and-click brain–computer interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1