Jean M Winter, Ying Hu, Graeme P Young, Maija R J Kohonen-Corish, Richard K Le Leu
{"title":"红肉和抗性淀粉在Msh2缺陷小鼠促生加合物形成、MGMT修复、胸腺淋巴瘤和肠道肿瘤发生中的作用","authors":"Jean M Winter, Ying Hu, Graeme P Young, Maija R J Kohonen-Corish, Richard K Le Leu","doi":"10.1159/000381675","DOIUrl":null,"url":null,"abstract":"<p><p>Red meat may increase promutagenic lesions in the colon. Resistant starch (RS) can reduce these lesions and chemically induced colon tumours in rodents. Msh2 is a mismatch repair (MMR) protein, recognising unrepaired promutagenic adducts for removal. We determined if red meat and/or RS modulated DNA adducts or oncogenesis in Msh2-deficient mice. A total of 100 Msh2-/- and 60 wild-type mice consumed 1 of 4 diets for 6 months: control, RS, red meat and red meat+RS. Survival time, aberrant crypt foci (ACF), colon and small intestinal tumours, lymphoma, colonic O6-methyl-2-deoxyguanosine (O6MeG) adducts, methylguanine methyltransferase (MGMT) and cell proliferation were examined. In Msh2-/- mice, red meat enhanced survival compared to control (p<0.01) and lowered total tumour burden compared to RS (p<0.167). Msh2-/- mice had more ACF than wild-type mice (p<0.014), but no colon tumours developed. Msh2-/- increased cell proliferation (p<0.001), lowered DNA O6MeG adducts (p<0.143) and enhanced MGMT protein levels (p<0.001) compared to wild-type mice, with RS supplementation also protecting against DNA adducts (p<0.01). No link between red meat-induced promutagenic adducts and risk for colorectal cancer was observed after 6 months' feeding. Colonic epithelial changes after red meat and RS consumption with MMR deficiency will differ from normal epithelial cells.</p>","PeriodicalId":54779,"journal":{"name":"Journal of Nutrigenetics and Nutrigenomics","volume":"7 4-6","pages":"299-313"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000381675","citationCount":"5","resultStr":"{\"title\":\"Role of Red Meat and Resistant Starch in Promutagenic Adduct Formation, MGMT Repair, Thymic Lymphoma and Intestinal Tumourigenesis in Msh2 -Deficient Mice.\",\"authors\":\"Jean M Winter, Ying Hu, Graeme P Young, Maija R J Kohonen-Corish, Richard K Le Leu\",\"doi\":\"10.1159/000381675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Red meat may increase promutagenic lesions in the colon. Resistant starch (RS) can reduce these lesions and chemically induced colon tumours in rodents. Msh2 is a mismatch repair (MMR) protein, recognising unrepaired promutagenic adducts for removal. We determined if red meat and/or RS modulated DNA adducts or oncogenesis in Msh2-deficient mice. A total of 100 Msh2-/- and 60 wild-type mice consumed 1 of 4 diets for 6 months: control, RS, red meat and red meat+RS. Survival time, aberrant crypt foci (ACF), colon and small intestinal tumours, lymphoma, colonic O6-methyl-2-deoxyguanosine (O6MeG) adducts, methylguanine methyltransferase (MGMT) and cell proliferation were examined. In Msh2-/- mice, red meat enhanced survival compared to control (p<0.01) and lowered total tumour burden compared to RS (p<0.167). Msh2-/- mice had more ACF than wild-type mice (p<0.014), but no colon tumours developed. Msh2-/- increased cell proliferation (p<0.001), lowered DNA O6MeG adducts (p<0.143) and enhanced MGMT protein levels (p<0.001) compared to wild-type mice, with RS supplementation also protecting against DNA adducts (p<0.01). No link between red meat-induced promutagenic adducts and risk for colorectal cancer was observed after 6 months' feeding. Colonic epithelial changes after red meat and RS consumption with MMR deficiency will differ from normal epithelial cells.</p>\",\"PeriodicalId\":54779,\"journal\":{\"name\":\"Journal of Nutrigenetics and Nutrigenomics\",\"volume\":\"7 4-6\",\"pages\":\"299-313\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000381675\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nutrigenetics and Nutrigenomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000381675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/5/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutrigenetics and Nutrigenomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000381675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/5/27 0:00:00","PubModel":"Epub","JCR":"Q","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Role of Red Meat and Resistant Starch in Promutagenic Adduct Formation, MGMT Repair, Thymic Lymphoma and Intestinal Tumourigenesis in Msh2 -Deficient Mice.
Red meat may increase promutagenic lesions in the colon. Resistant starch (RS) can reduce these lesions and chemically induced colon tumours in rodents. Msh2 is a mismatch repair (MMR) protein, recognising unrepaired promutagenic adducts for removal. We determined if red meat and/or RS modulated DNA adducts or oncogenesis in Msh2-deficient mice. A total of 100 Msh2-/- and 60 wild-type mice consumed 1 of 4 diets for 6 months: control, RS, red meat and red meat+RS. Survival time, aberrant crypt foci (ACF), colon and small intestinal tumours, lymphoma, colonic O6-methyl-2-deoxyguanosine (O6MeG) adducts, methylguanine methyltransferase (MGMT) and cell proliferation were examined. In Msh2-/- mice, red meat enhanced survival compared to control (p<0.01) and lowered total tumour burden compared to RS (p<0.167). Msh2-/- mice had more ACF than wild-type mice (p<0.014), but no colon tumours developed. Msh2-/- increased cell proliferation (p<0.001), lowered DNA O6MeG adducts (p<0.143) and enhanced MGMT protein levels (p<0.001) compared to wild-type mice, with RS supplementation also protecting against DNA adducts (p<0.01). No link between red meat-induced promutagenic adducts and risk for colorectal cancer was observed after 6 months' feeding. Colonic epithelial changes after red meat and RS consumption with MMR deficiency will differ from normal epithelial cells.
期刊介绍:
The emerging field of nutrigenetics and nutrigenomics is rapidly gaining importance, and this new international journal has been established to meet the needs of the investigators for a high-quality platform for their research. Endorsed by the recently founded "International Society of Nutrigenetics/Nutrigenomics", the ‘Journal of Nutrigenetics and Nutrigenomics’ welcomes contributions not only investigating the role of genetic variation in response to diet and that of nutrients in the regulation of gene expression, but is also open for articles covering all aspects of gene-environment interactions in the determination of health and disease.