{"title":"季节性变量下的流感动力学模型。","authors":"Masomeh Taherian, Megerdich Toomanian, Mohammadreza Molaei","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, influenza is modeled dynamically under seasonal variables. Seasonal variables made this model geometrically more complicated than without seasonal conditions. This modeling will be done in two cases with vaccination and without vaccination. These two models are solved in similar conditions by using Rung-Kutta method. The resulted data are shown in two diagrams and they are compared. We deduce a model for influenza without seasonal variable and vaccination and we consider its equilibrium points.</p>","PeriodicalId":54453,"journal":{"name":"Theoretical Biology Forum","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A dynamical model for influenza under seasonal variables.\",\"authors\":\"Masomeh Taherian, Megerdich Toomanian, Mohammadreza Molaei\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, influenza is modeled dynamically under seasonal variables. Seasonal variables made this model geometrically more complicated than without seasonal conditions. This modeling will be done in two cases with vaccination and without vaccination. These two models are solved in similar conditions by using Rung-Kutta method. The resulted data are shown in two diagrams and they are compared. We deduce a model for influenza without seasonal variable and vaccination and we consider its equilibrium points.</p>\",\"PeriodicalId\":54453,\"journal\":{\"name\":\"Theoretical Biology Forum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Biology Forum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Biology Forum","FirstCategoryId":"99","ListUrlMain":"","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
A dynamical model for influenza under seasonal variables.
In this study, influenza is modeled dynamically under seasonal variables. Seasonal variables made this model geometrically more complicated than without seasonal conditions. This modeling will be done in two cases with vaccination and without vaccination. These two models are solved in similar conditions by using Rung-Kutta method. The resulted data are shown in two diagrams and they are compared. We deduce a model for influenza without seasonal variable and vaccination and we consider its equilibrium points.