代谢组学的多变量分析。

Bradley Worley, Robert Powers
{"title":"代谢组学的多变量分析。","authors":"Bradley Worley,&nbsp;Robert Powers","doi":"10.2174/2213235X11301010092","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolomics aims to provide a global snapshot of all small-molecule metabolites in cells and biological fluids, free of observational biases inherent to more focused studies of metabolism. However, the staggeringly high information content of such global analyses introduces a challenge of its own; efficiently forming biologically relevant conclusions from any given metabolomics dataset indeed requires specialized forms of data analysis. One approach to finding meaning in metabolomics datasets involves multivariate analysis (MVA) methods such as principal component analysis (PCA) and partial least squares projection to latent structures (PLS), where spectral features contributing most to variation or separation are identified for further analysis. However, as with any mathematical treatment, these methods are not a panacea; this review discusses the use of multivariate analysis for metabolomics, as well as common pitfalls and misconceptions.</p>","PeriodicalId":10806,"journal":{"name":"Current Metabolomics","volume":"1 1","pages":"92-107"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2174/2213235X11301010092","citationCount":"936","resultStr":"{\"title\":\"Multivariate Analysis in Metabolomics.\",\"authors\":\"Bradley Worley,&nbsp;Robert Powers\",\"doi\":\"10.2174/2213235X11301010092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metabolomics aims to provide a global snapshot of all small-molecule metabolites in cells and biological fluids, free of observational biases inherent to more focused studies of metabolism. However, the staggeringly high information content of such global analyses introduces a challenge of its own; efficiently forming biologically relevant conclusions from any given metabolomics dataset indeed requires specialized forms of data analysis. One approach to finding meaning in metabolomics datasets involves multivariate analysis (MVA) methods such as principal component analysis (PCA) and partial least squares projection to latent structures (PLS), where spectral features contributing most to variation or separation are identified for further analysis. However, as with any mathematical treatment, these methods are not a panacea; this review discusses the use of multivariate analysis for metabolomics, as well as common pitfalls and misconceptions.</p>\",\"PeriodicalId\":10806,\"journal\":{\"name\":\"Current Metabolomics\",\"volume\":\"1 1\",\"pages\":\"92-107\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2174/2213235X11301010092\",\"citationCount\":\"936\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Metabolomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2213235X11301010092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Metabolomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2213235X11301010092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 936

摘要

代谢组学旨在提供细胞和生物体液中所有小分子代谢物的全球快照,而不受更集中的代谢研究固有的观察偏差的影响。然而,这种全球分析的信息量高得惊人,这本身也带来了挑战;有效地从任何给定的代谢组学数据集形成生物学相关的结论确实需要专门形式的数据分析。在代谢组学数据集中寻找意义的一种方法涉及多变量分析(MVA)方法,如主成分分析(PCA)和潜在结构的偏最小二乘投影(PLS),其中确定对变异或分离贡献最大的光谱特征以供进一步分析。然而,与任何数学处理一样,这些方法不是万灵药;这篇综述讨论了代谢组学多变量分析的使用,以及常见的陷阱和误解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multivariate Analysis in Metabolomics.

Metabolomics aims to provide a global snapshot of all small-molecule metabolites in cells and biological fluids, free of observational biases inherent to more focused studies of metabolism. However, the staggeringly high information content of such global analyses introduces a challenge of its own; efficiently forming biologically relevant conclusions from any given metabolomics dataset indeed requires specialized forms of data analysis. One approach to finding meaning in metabolomics datasets involves multivariate analysis (MVA) methods such as principal component analysis (PCA) and partial least squares projection to latent structures (PLS), where spectral features contributing most to variation or separation are identified for further analysis. However, as with any mathematical treatment, these methods are not a panacea; this review discusses the use of multivariate analysis for metabolomics, as well as common pitfalls and misconceptions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Understanding Prostate Cancer Cells Metabolome: A Spectroscopic Approach Genome-scale Metabolic Modelling for Succinic Acid Production in Escherichia coli Volatile Metabolomics with Focus on Fungal and Plant Applications - A Review Metabolite Profiling of Fruit and Seed Extracts of Garcinia Xanthochymus Using RP-HPLC-ESI-Q-TOF-MS and Progenesis QI Model-guided Metabolic Gene Knockout of pflA in Escherichia coli Increases Succinic Acid Production from Glycerol Carbon Source
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1