{"title":"通过协同过滤支持留学生选择大学。","authors":"Caitlin Tenison, Guangming Ling, Laura McCulla","doi":"10.1007/s40593-022-00307-0","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper we use historic score-reporting records and test-taker metadata to inform data-driven recommendations that support international students in their choice of undergraduate institutions for study in the United States. We investigate the use of Structural Topic Modeling (STM) as a context-aware, probabilistic recommendation method that uses test-takers' selections and metadata to model the latent space of college preferences. We present the model results from two perspectives: 1) to understand the impact of TOEFL score and test year on test-takers' preferences and choices and 2) to recommend to the test-taker additional undergraduate institutions for application consideration. We find that TOEFL scores can explain variance in the probability that test-takers belong to certain preference-groups and, by accounting for this, our system adjusts recommendations based on student score. We also find that the inclusion of year, while not significantly altering recommendations, does enable us to capture minor changes in the relative popularity of similar institutions. The performance of this model demonstrates the utility of this approach for providing students with personalized college recommendations and offers a useful baseline approach that can be extended with additional data sources.</p>","PeriodicalId":46637,"journal":{"name":"International Journal of Artificial Intelligence in Education","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9390112/pdf/","citationCount":"0","resultStr":"{\"title\":\"Supporting College Choice Among International Students through Collaborative Filtering.\",\"authors\":\"Caitlin Tenison, Guangming Ling, Laura McCulla\",\"doi\":\"10.1007/s40593-022-00307-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper we use historic score-reporting records and test-taker metadata to inform data-driven recommendations that support international students in their choice of undergraduate institutions for study in the United States. We investigate the use of Structural Topic Modeling (STM) as a context-aware, probabilistic recommendation method that uses test-takers' selections and metadata to model the latent space of college preferences. We present the model results from two perspectives: 1) to understand the impact of TOEFL score and test year on test-takers' preferences and choices and 2) to recommend to the test-taker additional undergraduate institutions for application consideration. We find that TOEFL scores can explain variance in the probability that test-takers belong to certain preference-groups and, by accounting for this, our system adjusts recommendations based on student score. We also find that the inclusion of year, while not significantly altering recommendations, does enable us to capture minor changes in the relative popularity of similar institutions. The performance of this model demonstrates the utility of this approach for providing students with personalized college recommendations and offers a useful baseline approach that can be extended with additional data sources.</p>\",\"PeriodicalId\":46637,\"journal\":{\"name\":\"International Journal of Artificial Intelligence in Education\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2022-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9390112/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Artificial Intelligence in Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40593-022-00307-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Artificial Intelligence in Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40593-022-00307-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Supporting College Choice Among International Students through Collaborative Filtering.
In this paper we use historic score-reporting records and test-taker metadata to inform data-driven recommendations that support international students in their choice of undergraduate institutions for study in the United States. We investigate the use of Structural Topic Modeling (STM) as a context-aware, probabilistic recommendation method that uses test-takers' selections and metadata to model the latent space of college preferences. We present the model results from two perspectives: 1) to understand the impact of TOEFL score and test year on test-takers' preferences and choices and 2) to recommend to the test-taker additional undergraduate institutions for application consideration. We find that TOEFL scores can explain variance in the probability that test-takers belong to certain preference-groups and, by accounting for this, our system adjusts recommendations based on student score. We also find that the inclusion of year, while not significantly altering recommendations, does enable us to capture minor changes in the relative popularity of similar institutions. The performance of this model demonstrates the utility of this approach for providing students with personalized college recommendations and offers a useful baseline approach that can be extended with additional data sources.
期刊介绍:
IJAIED publishes papers concerned with the application of AI to education. It aims to help the development of principles for the design of computer-based learning systems. Its premise is that such principles involve the modelling and representation of relevant aspects of knowledge, before implementation or during execution, and hence require the application of AI techniques and concepts. IJAIED has a very broad notion of the scope of AI and of a ''computer-based learning system'', as indicated by the following list of topics considered to be within the scope of IJAIED: adaptive and intelligent multimedia and hypermedia systemsagent-based learning environmentsAIED and teacher educationarchitectures for AIED systemsassessment and testing of learning outcomesauthoring systems and shells for AIED systemsbayesian and statistical methodscase-based systemscognitive developmentcognitive models of problem-solvingcognitive tools for learningcomputer-assisted language learningcomputer-supported collaborative learningdialogue (argumentation, explanation, negotiation, etc.) discovery environments and microworldsdistributed learning environmentseducational roboticsembedded training systemsempirical studies to inform the design of learning environmentsenvironments to support the learning of programmingevaluation of AIED systemsformal models of components of AIED systemshelp and advice systemshuman factors and interface designinstructional design principlesinstructional planningintelligent agents on the internetintelligent courseware for computer-based trainingintelligent tutoring systemsknowledge and skill acquisitionknowledge representation for instructionmodelling metacognitive skillsmodelling pedagogical interactionsmotivationnatural language interfaces for instructional systemsnetworked learning and teaching systemsneural models applied to AIED systemsperformance support systemspractical, real-world applications of AIED systemsqualitative reasoning in simulationssituated learning and cognitive apprenticeshipsocial and cultural aspects of learningstudent modelling and cognitive diagnosissupport for knowledge building communitiessupport for networked communicationtheories of learning and conceptual changetools for administration and curriculum integrationtools for the guided exploration of information resources