UPLC-Q-Exactive Orbitrap MS在大鼠血浆、尿液和粪便中对金丝桃苷的系统鉴定、破碎模式和代谢途径。

IF 2.3 3区 化学 Q3 CHEMISTRY, ANALYTICAL Journal of Analytical Methods in Chemistry Pub Date : 2022-09-13 eCollection Date: 2022-01-01 DOI:10.1155/2022/2623018
Li Ji, Wenjun Shi, Yanling Li, Jing He, Guang Xu, Ming Qin, Yuying Guo, Qun Ma
{"title":"UPLC-Q-Exactive Orbitrap MS在大鼠血浆、尿液和粪便中对金丝桃苷的系统鉴定、破碎模式和代谢途径。","authors":"Li Ji,&nbsp;Wenjun Shi,&nbsp;Yanling Li,&nbsp;Jing He,&nbsp;Guang Xu,&nbsp;Ming Qin,&nbsp;Yuying Guo,&nbsp;Qun Ma","doi":"10.1155/2022/2623018","DOIUrl":null,"url":null,"abstract":"<p><p>Hyperoside is a natural flavonol glycoside, which has antioxidation, antitumor, and anticancer activities together with other healthy effects like improving cardiovascular function, protecting the liver, and regulating the immune system. It is a popular compound used in the traditional Chinese medicine and different studies on hyperoside are present in the literature. However, studies on the metabolism of hyperoside <i>in vivo</i> were not comprehensive. In this study, UPLC-Q-Exactive Orbitrap MS technology was used to establish a rapid and comprehensive analysis strategy to explore the metabolites and metabolic process of hyperoside in rats. The metabolites of hyperoside were systematically identified in rat plasma, urine, and feces. According to the hyperoside standard substance and relevant works of literature, a total of 33 metabolites were identified, including 16 in plasma, 31 in urine, and 14 in feces. Among them, the metabolites quercetin and dihydroquercetin were unambiguously confirmed by comparison with standard substances. In addition, 13 metabolites had not been reported in hyperoside metabolism-related articles at present. The metabolic reactions of hyperoside <i>in vivo</i> were further explored, including phase I metabolism (hydroxylation, dehydroxylation, glycoside hydrolysis, hydrogenation, and hydration) and phase II metabolism (methylation, acetylation, sulfation, and glucuronide conjugation). The fragment ions of hyperoside and its metabolites were usually produced by glucoside bond hydrolysis, the neutral loss of (CO + OH), COH, CO, O, and Retro-Diels Alder (RDA) cleavage. In conclusion, this study comprehensively characterized the metabolism of hyperoside in rats, providing a basis for exploring its various biological activities.</p>","PeriodicalId":14974,"journal":{"name":"Journal of Analytical Methods in Chemistry","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9489401/pdf/","citationCount":"1","resultStr":"{\"title\":\"Systematic Identification, Fragmentation Pattern, And Metabolic Pathways of Hyperoside in Rat Plasma, Urine, And Feces by UPLC-Q-Exactive Orbitrap MS.\",\"authors\":\"Li Ji,&nbsp;Wenjun Shi,&nbsp;Yanling Li,&nbsp;Jing He,&nbsp;Guang Xu,&nbsp;Ming Qin,&nbsp;Yuying Guo,&nbsp;Qun Ma\",\"doi\":\"10.1155/2022/2623018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hyperoside is a natural flavonol glycoside, which has antioxidation, antitumor, and anticancer activities together with other healthy effects like improving cardiovascular function, protecting the liver, and regulating the immune system. It is a popular compound used in the traditional Chinese medicine and different studies on hyperoside are present in the literature. However, studies on the metabolism of hyperoside <i>in vivo</i> were not comprehensive. In this study, UPLC-Q-Exactive Orbitrap MS technology was used to establish a rapid and comprehensive analysis strategy to explore the metabolites and metabolic process of hyperoside in rats. The metabolites of hyperoside were systematically identified in rat plasma, urine, and feces. According to the hyperoside standard substance and relevant works of literature, a total of 33 metabolites were identified, including 16 in plasma, 31 in urine, and 14 in feces. Among them, the metabolites quercetin and dihydroquercetin were unambiguously confirmed by comparison with standard substances. In addition, 13 metabolites had not been reported in hyperoside metabolism-related articles at present. The metabolic reactions of hyperoside <i>in vivo</i> were further explored, including phase I metabolism (hydroxylation, dehydroxylation, glycoside hydrolysis, hydrogenation, and hydration) and phase II metabolism (methylation, acetylation, sulfation, and glucuronide conjugation). The fragment ions of hyperoside and its metabolites were usually produced by glucoside bond hydrolysis, the neutral loss of (CO + OH), COH, CO, O, and Retro-Diels Alder (RDA) cleavage. In conclusion, this study comprehensively characterized the metabolism of hyperoside in rats, providing a basis for exploring its various biological activities.</p>\",\"PeriodicalId\":14974,\"journal\":{\"name\":\"Journal of Analytical Methods in Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9489401/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analytical Methods in Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/2623018\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Methods in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2022/2623018","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 1

摘要

金丝桃苷是一种天然的黄酮醇糖苷,具有抗氧化、抗肿瘤、抗癌活性,并具有改善心血管功能、保护肝脏、调节免疫系统等健康作用。它是一种常用的中药化合物,文献中有关于金丝桃苷的不同研究。然而,对金丝桃苷在体内代谢的研究并不全面。本研究采用UPLC-Q-Exactive Orbitrap质谱技术,建立快速、全面的分析策略,探讨金桃苷在大鼠体内的代谢产物及代谢过程。在大鼠血浆、尿液和粪便中系统地鉴定了金丝桃苷的代谢产物。根据金丝桃苷标准物及相关文献,共鉴定出33种代谢物,其中血浆16种,尿液31种,粪便14种。其中代谢产物槲皮素和二氢槲皮素与标准物质对比明确。另外,目前有13种代谢物未在金丝桃苷代谢相关文章中报道。进一步探讨金丝桃苷在体内的代谢反应,包括ⅰ期代谢(羟基化、去羟基化、糖苷水解、氢化、水化)和ⅱ期代谢(甲基化、乙酰化、磺化、葡萄糖醛酸缀合)。金丝桃苷及其代谢产物的片段离子通常由糖苷键水解、(CO + OH)、COH、CO、O的中性损失和RDA裂解产生。综上所述,本研究全面表征了金丝桃苷在大鼠体内的代谢,为探索其各种生物活性提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Systematic Identification, Fragmentation Pattern, And Metabolic Pathways of Hyperoside in Rat Plasma, Urine, And Feces by UPLC-Q-Exactive Orbitrap MS.

Hyperoside is a natural flavonol glycoside, which has antioxidation, antitumor, and anticancer activities together with other healthy effects like improving cardiovascular function, protecting the liver, and regulating the immune system. It is a popular compound used in the traditional Chinese medicine and different studies on hyperoside are present in the literature. However, studies on the metabolism of hyperoside in vivo were not comprehensive. In this study, UPLC-Q-Exactive Orbitrap MS technology was used to establish a rapid and comprehensive analysis strategy to explore the metabolites and metabolic process of hyperoside in rats. The metabolites of hyperoside were systematically identified in rat plasma, urine, and feces. According to the hyperoside standard substance and relevant works of literature, a total of 33 metabolites were identified, including 16 in plasma, 31 in urine, and 14 in feces. Among them, the metabolites quercetin and dihydroquercetin were unambiguously confirmed by comparison with standard substances. In addition, 13 metabolites had not been reported in hyperoside metabolism-related articles at present. The metabolic reactions of hyperoside in vivo were further explored, including phase I metabolism (hydroxylation, dehydroxylation, glycoside hydrolysis, hydrogenation, and hydration) and phase II metabolism (methylation, acetylation, sulfation, and glucuronide conjugation). The fragment ions of hyperoside and its metabolites were usually produced by glucoside bond hydrolysis, the neutral loss of (CO + OH), COH, CO, O, and Retro-Diels Alder (RDA) cleavage. In conclusion, this study comprehensively characterized the metabolism of hyperoside in rats, providing a basis for exploring its various biological activities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Analytical Methods in Chemistry
Journal of Analytical Methods in Chemistry CHEMISTRY, ANALYTICAL-ENGINEERING, CIVIL
CiteScore
4.80
自引率
3.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: Journal of Analytical Methods in Chemistry publishes papers reporting methods and instrumentation for chemical analysis, and their application to real-world problems. Articles may be either practical or theoretical. Subject areas include (but are by no means limited to): Separation Spectroscopy Mass spectrometry Chromatography Analytical Sample Preparation Electrochemical analysis Hyphenated techniques Data processing As well as original research, Journal of Analytical Methods in Chemistry also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
期刊最新文献
Handgrip-Ring Structure Sensing Probe Assisted Multiple Signal Amplification Strategy for Sensitive and Label-Free Single-Stranded Nucleic Acid Analysis. Characterization of Volatile Organic Compounds and Aroma Sensory Properties in Yunnan Cigar. H-Type Indices With Applications in Chemometrics: h-Accuracy Index for Evaluating and Comparing Errors in Analytical Chemistry. Screening Antioxidant Components in Yiwei Decoction Using Spectrum-Effect Relationship and Network Pharmacology. Electrochemical Analysis of Methanol with Nafion-Coated Copper Oxide Nanoparticles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1