重症监护病房的数据科学。

Ming-Hao Luo, Dan-Lei Huang, Jing-Chao Luo, Ying Su, Jia-Kun Li, Guo-Wei Tu, Zhe Luo
{"title":"重症监护病房的数据科学。","authors":"Ming-Hao Luo,&nbsp;Dan-Lei Huang,&nbsp;Jing-Chao Luo,&nbsp;Ying Su,&nbsp;Jia-Kun Li,&nbsp;Guo-Wei Tu,&nbsp;Zhe Luo","doi":"10.5492/wjccm.v11.i5.311","DOIUrl":null,"url":null,"abstract":"<p><p>In this editorial, we comment on the current development and deployment of data science in intensive care units (ICUs). Data in ICUs can be classified into qualitative and quantitative data with different technologies needed to translate and interpret them. Data science, in the form of artificial intelligence (AI), should find the right interaction between physicians, data and algorithm. For individual patients and physicians, sepsis and mechanical ventilation have been two important aspects where AI has been extensively studied. However, major risks of bias, lack of generalizability and poor clinical values remain. AI deployment in the ICUs should be emphasized more to facilitate AI development. For ICU management, AI has a huge potential in transforming resource allocation. The coronavirus disease 2019 pandemic has given opportunities to establish such systems which should be investigated further. Ethical concerns must be addressed when designing such AI.</p>","PeriodicalId":66959,"journal":{"name":"世界危重病急救学杂志(英文版)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/68/1c/WJCCM-11-311.PMC9483002.pdf","citationCount":"1","resultStr":"{\"title\":\"Data science in the intensive care unit.\",\"authors\":\"Ming-Hao Luo,&nbsp;Dan-Lei Huang,&nbsp;Jing-Chao Luo,&nbsp;Ying Su,&nbsp;Jia-Kun Li,&nbsp;Guo-Wei Tu,&nbsp;Zhe Luo\",\"doi\":\"10.5492/wjccm.v11.i5.311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this editorial, we comment on the current development and deployment of data science in intensive care units (ICUs). Data in ICUs can be classified into qualitative and quantitative data with different technologies needed to translate and interpret them. Data science, in the form of artificial intelligence (AI), should find the right interaction between physicians, data and algorithm. For individual patients and physicians, sepsis and mechanical ventilation have been two important aspects where AI has been extensively studied. However, major risks of bias, lack of generalizability and poor clinical values remain. AI deployment in the ICUs should be emphasized more to facilitate AI development. For ICU management, AI has a huge potential in transforming resource allocation. The coronavirus disease 2019 pandemic has given opportunities to establish such systems which should be investigated further. Ethical concerns must be addressed when designing such AI.</p>\",\"PeriodicalId\":66959,\"journal\":{\"name\":\"世界危重病急救学杂志(英文版)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/68/1c/WJCCM-11-311.PMC9483002.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"世界危重病急救学杂志(英文版)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5492/wjccm.v11.i5.311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"世界危重病急救学杂志(英文版)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5492/wjccm.v11.i5.311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这篇社论中,我们评论了当前重症监护病房(icu)数据科学的发展和部署。icu中的数据可以分为定性和定量数据,需要不同的翻译和解释技术。数据科学,以人工智能(AI)的形式,应该找到医生,数据和算法之间的正确互动。对于个体患者和医生来说,败血症和机械通气是人工智能被广泛研究的两个重要方面。然而,主要的偏倚风险、缺乏通用性和较差的临床价值仍然存在。应更加重视AI在icu中的部署,促进AI发展。对于ICU管理而言,人工智能在改变资源配置方面具有巨大潜力。2019年冠状病毒病大流行为建立这种系统提供了机会,应该进一步研究。在设计这样的人工智能时,必须解决伦理问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data science in the intensive care unit.

In this editorial, we comment on the current development and deployment of data science in intensive care units (ICUs). Data in ICUs can be classified into qualitative and quantitative data with different technologies needed to translate and interpret them. Data science, in the form of artificial intelligence (AI), should find the right interaction between physicians, data and algorithm. For individual patients and physicians, sepsis and mechanical ventilation have been two important aspects where AI has been extensively studied. However, major risks of bias, lack of generalizability and poor clinical values remain. AI deployment in the ICUs should be emphasized more to facilitate AI development. For ICU management, AI has a huge potential in transforming resource allocation. The coronavirus disease 2019 pandemic has given opportunities to establish such systems which should be investigated further. Ethical concerns must be addressed when designing such AI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
216
期刊最新文献
Antimicrobial and synergistic effects of lemongrass and geranium essential oils against Streptococcus mutans, Staphylococcus aureus, and Candida spp. Driving pressure: A useful tool for reducing postoperative pulmonary complications. Early clinical outcomes of two regimens of prophylactic antibiotics in cardiac surgical patients with delayed sternal closure. Impact of different intravenous bolus rates on fluid and electrolyte balance and mortality in critically ill patients. Low T3 vs low T3T4 euthyroid sick syndrome in septic shock patients: A prospective observational cohort study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1