地磁场中pH电位动力学的环境依赖性波动。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2022-10-02 Epub Date: 2022-10-06 DOI:10.1080/15368378.2022.2125527
S Kernbach, O Kernbach
{"title":"地磁场中pH电位动力学的环境依赖性波动。","authors":"S Kernbach,&nbsp;O Kernbach","doi":"10.1080/15368378.2022.2125527","DOIUrl":null,"url":null,"abstract":"<p><p>This work explores fluctuations of potentiometric <i>pH</i> dynamics in environments with different configurations of geomagnetic fields. High-resolution <i>pH</i> measurements of test liquids are conducted in electromagnetically shielded and thermally stabilized conditions. External measurement environment in two laboratories is modulated by non-conducting/non-magnetic objects of organic and inorganic origins. Totally, 88 experiments in three groups have been conducted during 4 months. The affected <i>pH</i> dynamics at the level of 10<sup>-2</sup>-10<sup>-5</sup> <i>pH</i> is detected in 93.5%, 82.2% and 74.4% depending on dielectric permittivity of environmental objects. Reaction of potentiometric system has a typical delay of 30-180 minutes. Experiments in both laboratories demonstrated 19% difference of reproducibility rate caused by different background fluctuations. To explain the obtained results, the paper discusses the effects of the Earth's electric and magnetic fields in the form of magnetospheric Poynting vectors or spin-spin forces in geomagnetic field, which affects the productivity of ionic and free-radical reactions. Since the <i>pH</i> level of aqueous solutions controls various biochemical reactions, this mechanism can explain several biological effects with non-contact signal transmission observed in environmental biology and electromagnetic biophysics.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Environment-dependent fluctuations of potentiometric pH dynamics in geomagnetic field.\",\"authors\":\"S Kernbach,&nbsp;O Kernbach\",\"doi\":\"10.1080/15368378.2022.2125527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work explores fluctuations of potentiometric <i>pH</i> dynamics in environments with different configurations of geomagnetic fields. High-resolution <i>pH</i> measurements of test liquids are conducted in electromagnetically shielded and thermally stabilized conditions. External measurement environment in two laboratories is modulated by non-conducting/non-magnetic objects of organic and inorganic origins. Totally, 88 experiments in three groups have been conducted during 4 months. The affected <i>pH</i> dynamics at the level of 10<sup>-2</sup>-10<sup>-5</sup> <i>pH</i> is detected in 93.5%, 82.2% and 74.4% depending on dielectric permittivity of environmental objects. Reaction of potentiometric system has a typical delay of 30-180 minutes. Experiments in both laboratories demonstrated 19% difference of reproducibility rate caused by different background fluctuations. To explain the obtained results, the paper discusses the effects of the Earth's electric and magnetic fields in the form of magnetospheric Poynting vectors or spin-spin forces in geomagnetic field, which affects the productivity of ionic and free-radical reactions. Since the <i>pH</i> level of aqueous solutions controls various biochemical reactions, this mechanism can explain several biological effects with non-contact signal transmission observed in environmental biology and electromagnetic biophysics.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15368378.2022.2125527\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/10/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15368378.2022.2125527","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

本研究探讨了不同地磁场结构环境下电位pH动力学的波动。测试液体的高分辨率pH值测量在电磁屏蔽和热稳定条件下进行。两个实验室的外部测量环境由有机和无机来源的非导电/非磁性物体调制。在4个月的时间里,共进行了3组88次实验。在10-2-10-5 pH水平下,受环境物体介电常数影响的pH动态分别为93.5%、82.2%和74.4%。电位滴定反应的典型延迟为30 ~ 180分钟。两个实验室的实验表明,不同背景波动导致的再现率相差19%。为了解释得到的结果,本文讨论了地球电场和磁场以磁层坡印亭矢量或地磁场自旋力的形式影响离子和自由基反应的生产力。由于水溶液的pH水平控制着各种生物化学反应,这一机制可以解释环境生物学和电磁生物物理学中观察到的几种非接触信号传递的生物效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Environment-dependent fluctuations of potentiometric pH dynamics in geomagnetic field.

This work explores fluctuations of potentiometric pH dynamics in environments with different configurations of geomagnetic fields. High-resolution pH measurements of test liquids are conducted in electromagnetically shielded and thermally stabilized conditions. External measurement environment in two laboratories is modulated by non-conducting/non-magnetic objects of organic and inorganic origins. Totally, 88 experiments in three groups have been conducted during 4 months. The affected pH dynamics at the level of 10-2-10-5 pH is detected in 93.5%, 82.2% and 74.4% depending on dielectric permittivity of environmental objects. Reaction of potentiometric system has a typical delay of 30-180 minutes. Experiments in both laboratories demonstrated 19% difference of reproducibility rate caused by different background fluctuations. To explain the obtained results, the paper discusses the effects of the Earth's electric and magnetic fields in the form of magnetospheric Poynting vectors or spin-spin forces in geomagnetic field, which affects the productivity of ionic and free-radical reactions. Since the pH level of aqueous solutions controls various biochemical reactions, this mechanism can explain several biological effects with non-contact signal transmission observed in environmental biology and electromagnetic biophysics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1