{"title":"心脏TRPV4通道。","authors":"Vivian C Onyali, Timothy L Domeier","doi":"10.1016/bs.ctm.2022.06.004","DOIUrl":null,"url":null,"abstract":"<p><p>Transient Receptor Potential Vanilloid 4 (TRPV4) is expressed in numerous cell types within the heart, yet the expression levels, subcellular localization, and functional relevance of TRPV4 in cardiac myocytes is under-appreciated. Recent data indicate a critical role of TRPV4 in both atrial and ventricular myocyte biology, with expression levels and channel function increasing following pathological scenarios including ischemia, myocardial infarction, mechanical stress, and inflammation. Excessive activation of TRPV4 at the cellular level contributes to enhanced Ca<sup>2+</sup> entry which predisposes the cardiac myocyte to pro-arrhythmic Ca<sup>2+</sup> overload and electrophysiological abnormalities. At the organ level, excessive TRPV4 activity associates with cardiac hypercontractility, cardiac damage, ventricular arrhythmia, and atrial fibrillation. This manuscript chapter describes the emerging literature on TRPV4 in cardiac myocytes in physiology and disease.</p>","PeriodicalId":11029,"journal":{"name":"Current topics in membranes","volume":" ","pages":"63-74"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cardiac TRPV4 channels.\",\"authors\":\"Vivian C Onyali, Timothy L Domeier\",\"doi\":\"10.1016/bs.ctm.2022.06.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transient Receptor Potential Vanilloid 4 (TRPV4) is expressed in numerous cell types within the heart, yet the expression levels, subcellular localization, and functional relevance of TRPV4 in cardiac myocytes is under-appreciated. Recent data indicate a critical role of TRPV4 in both atrial and ventricular myocyte biology, with expression levels and channel function increasing following pathological scenarios including ischemia, myocardial infarction, mechanical stress, and inflammation. Excessive activation of TRPV4 at the cellular level contributes to enhanced Ca<sup>2+</sup> entry which predisposes the cardiac myocyte to pro-arrhythmic Ca<sup>2+</sup> overload and electrophysiological abnormalities. At the organ level, excessive TRPV4 activity associates with cardiac hypercontractility, cardiac damage, ventricular arrhythmia, and atrial fibrillation. This manuscript chapter describes the emerging literature on TRPV4 in cardiac myocytes in physiology and disease.</p>\",\"PeriodicalId\":11029,\"journal\":{\"name\":\"Current topics in membranes\",\"volume\":\" \",\"pages\":\"63-74\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current topics in membranes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.ctm.2022.06.004\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/8/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in membranes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.ctm.2022.06.004","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/1 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Transient Receptor Potential Vanilloid 4 (TRPV4) is expressed in numerous cell types within the heart, yet the expression levels, subcellular localization, and functional relevance of TRPV4 in cardiac myocytes is under-appreciated. Recent data indicate a critical role of TRPV4 in both atrial and ventricular myocyte biology, with expression levels and channel function increasing following pathological scenarios including ischemia, myocardial infarction, mechanical stress, and inflammation. Excessive activation of TRPV4 at the cellular level contributes to enhanced Ca2+ entry which predisposes the cardiac myocyte to pro-arrhythmic Ca2+ overload and electrophysiological abnormalities. At the organ level, excessive TRPV4 activity associates with cardiac hypercontractility, cardiac damage, ventricular arrhythmia, and atrial fibrillation. This manuscript chapter describes the emerging literature on TRPV4 in cardiac myocytes in physiology and disease.
期刊介绍:
Current Topics in Membranes provides a systematic, comprehensive, and rigorous approach to specific topics relevant to the study of cellular membranes. Each volume is a guest edited compendium of membrane biology.