{"title":"TRPV4在骨骼功能及其突变介导的骨骼疾病中的作用。","authors":"Rashmita Das, Chandan Goswami","doi":"10.1016/bs.ctm.2022.07.004","DOIUrl":null,"url":null,"abstract":"<p><p>TRPV4 is a non-selective cation channel that belongs to the TRP super family. This channel can be activated by physiological temperatures and mechanical stimuli. In addition, TRPV4 is modulated by several endogenous mediators including specific lipids, cholesterol and their metabolic products. TRPV4 gene is present in all vertebrates and is widely expressed in tissues originating from ectoderm, endoderm and mesoderm. Although TRPV4 knockout is not lethal, point mutations in TRPV4 cause severe clinical phenotypes with variable penetration in human population. These mutations are mostly \"gain-of-function\" in nature and primarily affect muscles, bones and peripheral neurons, endorsing TRPV4 as critical regulator of musculoskeletal systems. Here we critically analyze the involvement of TRPV4 in musculoskeletal system. Studies of TRPV4 mutations provide detailed information on musculoskeletal disorders at molecular, cellular and metabolic levels.</p>","PeriodicalId":11029,"journal":{"name":"Current topics in membranes","volume":" ","pages":"221-246"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Role of TRPV4 in skeletal function and its mutant-mediated skeletal disorders.\",\"authors\":\"Rashmita Das, Chandan Goswami\",\"doi\":\"10.1016/bs.ctm.2022.07.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>TRPV4 is a non-selective cation channel that belongs to the TRP super family. This channel can be activated by physiological temperatures and mechanical stimuli. In addition, TRPV4 is modulated by several endogenous mediators including specific lipids, cholesterol and their metabolic products. TRPV4 gene is present in all vertebrates and is widely expressed in tissues originating from ectoderm, endoderm and mesoderm. Although TRPV4 knockout is not lethal, point mutations in TRPV4 cause severe clinical phenotypes with variable penetration in human population. These mutations are mostly \\\"gain-of-function\\\" in nature and primarily affect muscles, bones and peripheral neurons, endorsing TRPV4 as critical regulator of musculoskeletal systems. Here we critically analyze the involvement of TRPV4 in musculoskeletal system. Studies of TRPV4 mutations provide detailed information on musculoskeletal disorders at molecular, cellular and metabolic levels.</p>\",\"PeriodicalId\":11029,\"journal\":{\"name\":\"Current topics in membranes\",\"volume\":\" \",\"pages\":\"221-246\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current topics in membranes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.ctm.2022.07.004\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/9/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in membranes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.ctm.2022.07.004","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/2 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Role of TRPV4 in skeletal function and its mutant-mediated skeletal disorders.
TRPV4 is a non-selective cation channel that belongs to the TRP super family. This channel can be activated by physiological temperatures and mechanical stimuli. In addition, TRPV4 is modulated by several endogenous mediators including specific lipids, cholesterol and their metabolic products. TRPV4 gene is present in all vertebrates and is widely expressed in tissues originating from ectoderm, endoderm and mesoderm. Although TRPV4 knockout is not lethal, point mutations in TRPV4 cause severe clinical phenotypes with variable penetration in human population. These mutations are mostly "gain-of-function" in nature and primarily affect muscles, bones and peripheral neurons, endorsing TRPV4 as critical regulator of musculoskeletal systems. Here we critically analyze the involvement of TRPV4 in musculoskeletal system. Studies of TRPV4 mutations provide detailed information on musculoskeletal disorders at molecular, cellular and metabolic levels.
期刊介绍:
Current Topics in Membranes provides a systematic, comprehensive, and rigorous approach to specific topics relevant to the study of cellular membranes. Each volume is a guest edited compendium of membrane biology.