Xavier A Figueroa, Lucas Lacambra, B Michael Butters
{"title":"在经过验证的大鼠疼痛模型中减少疼痛:使用仿真®传递系统针对低和超低端的射频频谱。","authors":"Xavier A Figueroa, Lucas Lacambra, B Michael Butters","doi":"10.1080/15368378.2022.2131568","DOIUrl":null,"url":null,"abstract":"<p><p>EMulate Therapeutics, Inc. (EMTx) has developed a technology to deliver time-varying magnetic fields as WAV files, emitted in the extremely low through the low spectrum of radio frequencies (DC to 22 kHz), that can be applied to regulate pain sensation. These low power fields (~30-70 milli-Gauss AC RMS) are delivered via a portable, light-weight wearable device (Voyager). A contract third-party animal research organization (ANS Biotech, S.A.) specializing in validated rat pain models, ran the studies independently of the authors. Here we report that a subset of signals demonstrated a statistically significant effect in reducing the sensation of pain in rat models for visceral pain, neuropathic pain and inflammatory pain. Furthermore, removing frequencies above 6 kHz in the original signals improve the pain reducing effects of the unmodified signal.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pain reduction in validated rat pain models: radio frequency spectrum targeted at the low and ultra-low ends using the emulate® delivery system.\",\"authors\":\"Xavier A Figueroa, Lucas Lacambra, B Michael Butters\",\"doi\":\"10.1080/15368378.2022.2131568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>EMulate Therapeutics, Inc. (EMTx) has developed a technology to deliver time-varying magnetic fields as WAV files, emitted in the extremely low through the low spectrum of radio frequencies (DC to 22 kHz), that can be applied to regulate pain sensation. These low power fields (~30-70 milli-Gauss AC RMS) are delivered via a portable, light-weight wearable device (Voyager). A contract third-party animal research organization (ANS Biotech, S.A.) specializing in validated rat pain models, ran the studies independently of the authors. Here we report that a subset of signals demonstrated a statistically significant effect in reducing the sensation of pain in rat models for visceral pain, neuropathic pain and inflammatory pain. Furthermore, removing frequencies above 6 kHz in the original signals improve the pain reducing effects of the unmodified signal.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15368378.2022.2131568\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/10/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15368378.2022.2131568","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Pain reduction in validated rat pain models: radio frequency spectrum targeted at the low and ultra-low ends using the emulate® delivery system.
EMulate Therapeutics, Inc. (EMTx) has developed a technology to deliver time-varying magnetic fields as WAV files, emitted in the extremely low through the low spectrum of radio frequencies (DC to 22 kHz), that can be applied to regulate pain sensation. These low power fields (~30-70 milli-Gauss AC RMS) are delivered via a portable, light-weight wearable device (Voyager). A contract third-party animal research organization (ANS Biotech, S.A.) specializing in validated rat pain models, ran the studies independently of the authors. Here we report that a subset of signals demonstrated a statistically significant effect in reducing the sensation of pain in rat models for visceral pain, neuropathic pain and inflammatory pain. Furthermore, removing frequencies above 6 kHz in the original signals improve the pain reducing effects of the unmodified signal.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.