Liwei Lang, Han-Fei Ding, Xiaoguang Chen, Shi-Yong Sun, Gang Liu, Chunhong Yan
{"title":"基于内部核糖体进入位点的双链原位报告基因检测发现转录靶向先导化合物。","authors":"Liwei Lang, Han-Fei Ding, Xiaoguang Chen, Shi-Yong Sun, Gang Liu, Chunhong Yan","doi":"10.1016/j.chembiol.2015.06.009","DOIUrl":null,"url":null,"abstract":"<p><p>Although transgene-based reporter gene assays have been used to discover small molecules targeting expression of cancer-driving genes, the success is limited due to the fact that reporter gene expression regulated by incomplete cis-acting elements and foreign epigenetic environments does not faithfully reproduce chemical responses of endogenous genes. Here, we present an internal ribosome entry site-based strategy for bicistronically co-expressing reporter genes with an endogenous gene in the native gene locus, yielding an in situ reporter assay closely mimicking endogenous gene expression without disintegrating its function. This strategy combines the CRISPR-Cas9-mediated genome-editing tool with the recombinase-mediated cassette-exchange technology, and allows for rapid development of orthogonal assays for excluding false hits generated from primary screens. We validated this strategy by developing a screening platform for identifying compounds targeting oncogenic eIF4E, and demonstrated that the novel reporter assays are powerful in searching for transcription-targeted lead compounds with high confidence.</p>","PeriodicalId":9772,"journal":{"name":"Chemistry & biology","volume":" ","pages":"957-64"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.chembiol.2015.06.009","citationCount":"9","resultStr":"{\"title\":\"Internal Ribosome Entry Site-Based Bicistronic In Situ Reporter Assays for Discovery of Transcription-Targeted Lead Compounds.\",\"authors\":\"Liwei Lang, Han-Fei Ding, Xiaoguang Chen, Shi-Yong Sun, Gang Liu, Chunhong Yan\",\"doi\":\"10.1016/j.chembiol.2015.06.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although transgene-based reporter gene assays have been used to discover small molecules targeting expression of cancer-driving genes, the success is limited due to the fact that reporter gene expression regulated by incomplete cis-acting elements and foreign epigenetic environments does not faithfully reproduce chemical responses of endogenous genes. Here, we present an internal ribosome entry site-based strategy for bicistronically co-expressing reporter genes with an endogenous gene in the native gene locus, yielding an in situ reporter assay closely mimicking endogenous gene expression without disintegrating its function. This strategy combines the CRISPR-Cas9-mediated genome-editing tool with the recombinase-mediated cassette-exchange technology, and allows for rapid development of orthogonal assays for excluding false hits generated from primary screens. We validated this strategy by developing a screening platform for identifying compounds targeting oncogenic eIF4E, and demonstrated that the novel reporter assays are powerful in searching for transcription-targeted lead compounds with high confidence.</p>\",\"PeriodicalId\":9772,\"journal\":{\"name\":\"Chemistry & biology\",\"volume\":\" \",\"pages\":\"957-64\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.chembiol.2015.06.009\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry & biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chembiol.2015.06.009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/7/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry & biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chembiol.2015.06.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/7/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Internal Ribosome Entry Site-Based Bicistronic In Situ Reporter Assays for Discovery of Transcription-Targeted Lead Compounds.
Although transgene-based reporter gene assays have been used to discover small molecules targeting expression of cancer-driving genes, the success is limited due to the fact that reporter gene expression regulated by incomplete cis-acting elements and foreign epigenetic environments does not faithfully reproduce chemical responses of endogenous genes. Here, we present an internal ribosome entry site-based strategy for bicistronically co-expressing reporter genes with an endogenous gene in the native gene locus, yielding an in situ reporter assay closely mimicking endogenous gene expression without disintegrating its function. This strategy combines the CRISPR-Cas9-mediated genome-editing tool with the recombinase-mediated cassette-exchange technology, and allows for rapid development of orthogonal assays for excluding false hits generated from primary screens. We validated this strategy by developing a screening platform for identifying compounds targeting oncogenic eIF4E, and demonstrated that the novel reporter assays are powerful in searching for transcription-targeted lead compounds with high confidence.