{"title":"孤对硫族半导体的化学有序性和电子性质","authors":"Vineet Sharma , Sunanda Sharda , Neha Sharma , S.C. Katyal , Pankaj Sharma","doi":"10.1016/j.progsolidstchem.2019.04.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>Chalcogenide lone pair semiconducting materials<span> are important materials due to their prospective applications in thermoelectrics<span><span>, phase change memories, </span>topological insulators </span></span></span><em>etc</em><span>. Investigating these lone pair semiconductors for versatile applications, different electronic properties were studied by researchers world-wide. Analyses of these semiconducting materials in bulk and thin films for electronic properties like dark and photo-conductivity, photosensitivity, carrier concentration, carrier type, relaxation time and thermopower are the major constituents while accepting them for applications. This review stresses on the electronic properties of several binary, ternary and quaternary lone pair chalcogenide systems. The electronic properties are generally discussed on the basis of chemical ordering in system. A brief discussion on some theoretical background of conduction mechanism has also been incorporated for new researchers in this field. Potential applications of chalcogenide semiconducting materials have been outlined.</span></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":null,"pages":null},"PeriodicalIF":9.1000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsolidstchem.2019.04.001","citationCount":"28","resultStr":"{\"title\":\"Chemical ordering and electronic properties of lone pair chalcogenide semiconductors\",\"authors\":\"Vineet Sharma , Sunanda Sharda , Neha Sharma , S.C. Katyal , Pankaj Sharma\",\"doi\":\"10.1016/j.progsolidstchem.2019.04.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Chalcogenide lone pair semiconducting materials<span> are important materials due to their prospective applications in thermoelectrics<span><span>, phase change memories, </span>topological insulators </span></span></span><em>etc</em><span>. Investigating these lone pair semiconductors for versatile applications, different electronic properties were studied by researchers world-wide. Analyses of these semiconducting materials in bulk and thin films for electronic properties like dark and photo-conductivity, photosensitivity, carrier concentration, carrier type, relaxation time and thermopower are the major constituents while accepting them for applications. This review stresses on the electronic properties of several binary, ternary and quaternary lone pair chalcogenide systems. The electronic properties are generally discussed on the basis of chemical ordering in system. A brief discussion on some theoretical background of conduction mechanism has also been incorporated for new researchers in this field. Potential applications of chalcogenide semiconducting materials have been outlined.</span></p></div>\",\"PeriodicalId\":415,\"journal\":{\"name\":\"Progress in Solid State Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.progsolidstchem.2019.04.001\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Solid State Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079678619300020\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079678619300020","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Chemical ordering and electronic properties of lone pair chalcogenide semiconductors
Chalcogenide lone pair semiconducting materials are important materials due to their prospective applications in thermoelectrics, phase change memories, topological insulators etc. Investigating these lone pair semiconductors for versatile applications, different electronic properties were studied by researchers world-wide. Analyses of these semiconducting materials in bulk and thin films for electronic properties like dark and photo-conductivity, photosensitivity, carrier concentration, carrier type, relaxation time and thermopower are the major constituents while accepting them for applications. This review stresses on the electronic properties of several binary, ternary and quaternary lone pair chalcogenide systems. The electronic properties are generally discussed on the basis of chemical ordering in system. A brief discussion on some theoretical background of conduction mechanism has also been incorporated for new researchers in this field. Potential applications of chalcogenide semiconducting materials have been outlined.
期刊介绍:
Progress in Solid State Chemistry offers critical reviews and specialized articles written by leading experts in the field, providing a comprehensive view of solid-state chemistry. It addresses the challenge of dispersed literature by offering up-to-date assessments of research progress and recent developments. Emphasis is placed on the relationship between physical properties and structural chemistry, particularly imperfections like vacancies and dislocations. The reviews published in Progress in Solid State Chemistry emphasize critical evaluation of the field, along with indications of current problems and future directions. Papers are not intended to be bibliographic in nature but rather to inform a broad range of readers in an inherently multidisciplinary field by providing expert treatises oriented both towards specialists in different areas of the solid state and towards nonspecialists. The authorship is international, and the subject matter will be of interest to chemists, materials scientists, physicists, metallurgists, crystallographers, ceramists, and engineers interested in the solid state.