{"title":"用扫描隧道光谱探测单自旋和耦合自旋系统中的磁激发和相关","authors":"Markus Ternes","doi":"10.1016/j.progsurf.2017.01.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>Spectroscopic measurements with low-temperature scanning tunneling microscopes have been used very successfully for studying not only individual atomic or molecular spins on surfaces but also complexly designed coupled systems. The symmetry breaking of the supporting surface induces </span>magnetic anisotropy which lead to characteristic fingerprints in the spectrum of the differential conductance and can be well understood with simple model Hamiltonians. Furthermore, correlated many-particle states can emerge due to the interaction with itinerant electrons of the electrodes, making these systems ideal prototypical quantum systems. In this manuscript more complex bipartite and spin-chains will be discussed additionally. Their spectra enable to determine precisely the nature of the interactions between the spins which can lead to the formation of new quantum states which emerge by interatomic entanglement.</p></div>","PeriodicalId":416,"journal":{"name":"Progress in Surface Science","volume":"92 1","pages":"Pages 83-115"},"PeriodicalIF":8.7000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.progsurf.2017.01.001","citationCount":"51","resultStr":"{\"title\":\"Probing magnetic excitations and correlations in single and coupled spin systems with scanning tunneling spectroscopy\",\"authors\":\"Markus Ternes\",\"doi\":\"10.1016/j.progsurf.2017.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Spectroscopic measurements with low-temperature scanning tunneling microscopes have been used very successfully for studying not only individual atomic or molecular spins on surfaces but also complexly designed coupled systems. The symmetry breaking of the supporting surface induces </span>magnetic anisotropy which lead to characteristic fingerprints in the spectrum of the differential conductance and can be well understood with simple model Hamiltonians. Furthermore, correlated many-particle states can emerge due to the interaction with itinerant electrons of the electrodes, making these systems ideal prototypical quantum systems. In this manuscript more complex bipartite and spin-chains will be discussed additionally. Their spectra enable to determine precisely the nature of the interactions between the spins which can lead to the formation of new quantum states which emerge by interatomic entanglement.</p></div>\",\"PeriodicalId\":416,\"journal\":{\"name\":\"Progress in Surface Science\",\"volume\":\"92 1\",\"pages\":\"Pages 83-115\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.progsurf.2017.01.001\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Surface Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079681617300011\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Surface Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079681617300011","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Probing magnetic excitations and correlations in single and coupled spin systems with scanning tunneling spectroscopy
Spectroscopic measurements with low-temperature scanning tunneling microscopes have been used very successfully for studying not only individual atomic or molecular spins on surfaces but also complexly designed coupled systems. The symmetry breaking of the supporting surface induces magnetic anisotropy which lead to characteristic fingerprints in the spectrum of the differential conductance and can be well understood with simple model Hamiltonians. Furthermore, correlated many-particle states can emerge due to the interaction with itinerant electrons of the electrodes, making these systems ideal prototypical quantum systems. In this manuscript more complex bipartite and spin-chains will be discussed additionally. Their spectra enable to determine precisely the nature of the interactions between the spins which can lead to the formation of new quantum states which emerge by interatomic entanglement.
期刊介绍:
Progress in Surface Science publishes progress reports and review articles by invited authors of international stature. The papers are aimed at surface scientists and cover various aspects of surface science. Papers in the new section Progress Highlights, are more concise and general at the same time, and are aimed at all scientists. Because of the transdisciplinary nature of surface science, topics are chosen for their timeliness from across the wide spectrum of scientific and engineering subjects. The journal strives to promote the exchange of ideas between surface scientists in the various areas. Authors are encouraged to write articles that are of relevance and interest to both established surface scientists and newcomers in the field.