单深度帧的3D面部幻觉。

Shu Liang, Ira Kemelmacher-Shlizerman, Linda G Shapiro
{"title":"单深度帧的3D面部幻觉。","authors":"Shu Liang,&nbsp;Ira Kemelmacher-Shlizerman,&nbsp;Linda G Shapiro","doi":"10.1109/3DV.2014.67","DOIUrl":null,"url":null,"abstract":"<p><p>We present an algorithm that takes a single frame of a person's face from a depth camera, e.g., Kinect, and produces a high-resolution 3D mesh of the input face. We leverage a dataset of 3D face meshes of 1204 distinct individuals ranging from age 3 to 40, captured in a neutral expression. We divide the input depth frame into semantically significant regions (eyes, nose, mouth, cheeks) and search the database for the best matching shape per region. We further combine the input depth frame with the matched database shapes into a single mesh that results in a highresolution shape of the input person. Our system is fully automatic and uses only depth data for matching, making it invariant to imaging conditions. We evaluate our results using ground truth shapes, as well as compare to state-of-the-art shape estimation methods. We demonstrate the robustness of our local matching approach with high-quality reconstruction of faces that fall outside of the dataset span, e.g., faces older than 40 years old, facial expressions, and different ethnicities.</p>","PeriodicalId":91162,"journal":{"name":"Proceedings. International Conference on 3D Vision","volume":"2014 ","pages":"31-38"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/3DV.2014.67","citationCount":"24","resultStr":"{\"title\":\"3D Face Hallucination from a Single Depth Frame.\",\"authors\":\"Shu Liang,&nbsp;Ira Kemelmacher-Shlizerman,&nbsp;Linda G Shapiro\",\"doi\":\"10.1109/3DV.2014.67\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present an algorithm that takes a single frame of a person's face from a depth camera, e.g., Kinect, and produces a high-resolution 3D mesh of the input face. We leverage a dataset of 3D face meshes of 1204 distinct individuals ranging from age 3 to 40, captured in a neutral expression. We divide the input depth frame into semantically significant regions (eyes, nose, mouth, cheeks) and search the database for the best matching shape per region. We further combine the input depth frame with the matched database shapes into a single mesh that results in a highresolution shape of the input person. Our system is fully automatic and uses only depth data for matching, making it invariant to imaging conditions. We evaluate our results using ground truth shapes, as well as compare to state-of-the-art shape estimation methods. We demonstrate the robustness of our local matching approach with high-quality reconstruction of faces that fall outside of the dataset span, e.g., faces older than 40 years old, facial expressions, and different ethnicities.</p>\",\"PeriodicalId\":91162,\"journal\":{\"name\":\"Proceedings. International Conference on 3D Vision\",\"volume\":\"2014 \",\"pages\":\"31-38\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/3DV.2014.67\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Conference on 3D Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DV.2014.67\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on 3D Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV.2014.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

我们提出了一种算法,该算法从深度相机(例如Kinect)中获取人脸的单帧,并生成输入人脸的高分辨率3D网格。我们利用1204个年龄从3岁到40岁的不同个体的3D面部网格数据集,以中性表情捕获。我们将输入深度帧划分为语义上重要的区域(眼睛,鼻子,嘴巴,脸颊),并在数据库中搜索每个区域的最佳匹配形状。我们进一步将输入深度帧与匹配的数据库形状组合成一个网格,从而得到输入人物的高分辨率形状。我们的系统是全自动的,只使用深度数据进行匹配,使其不受成像条件的影响。我们使用地面真值形状评估我们的结果,并与最先进的形状估计方法进行比较。我们通过对数据集范围之外的人脸进行高质量重建来证明我们的局部匹配方法的鲁棒性,例如,年龄超过40岁的人脸、面部表情和不同的种族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D Face Hallucination from a Single Depth Frame.

We present an algorithm that takes a single frame of a person's face from a depth camera, e.g., Kinect, and produces a high-resolution 3D mesh of the input face. We leverage a dataset of 3D face meshes of 1204 distinct individuals ranging from age 3 to 40, captured in a neutral expression. We divide the input depth frame into semantically significant regions (eyes, nose, mouth, cheeks) and search the database for the best matching shape per region. We further combine the input depth frame with the matched database shapes into a single mesh that results in a highresolution shape of the input person. Our system is fully automatic and uses only depth data for matching, making it invariant to imaging conditions. We evaluate our results using ground truth shapes, as well as compare to state-of-the-art shape estimation methods. We demonstrate the robustness of our local matching approach with high-quality reconstruction of faces that fall outside of the dataset span, e.g., faces older than 40 years old, facial expressions, and different ethnicities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Message from the Program Chairs: 3DV 2022 Message from the 3DV 2020 Program Chairs Performance Evaluation of 3D Correspondence Grouping Algorithms SEGCloud: Semantic Segmentation of 3D Point Clouds GSLAM: Initialization-Robust Monocular Visual SLAM via Global Structure-from-Motion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1