Wenyi Li, Neil M O'Brien-Simpson, Julien Tailhades, Namfon Pantarat, Raymond M Dawson, Laszlo Otvos, Eric C Reynolds, Frances Separovic, Mohammed Akhter Hossain, John D Wade
{"title":"富含脯氨酸的抗菌肽Chex-Arg20的聚合改变了其与大肠杆菌膜相互作用的机制","authors":"Wenyi Li, Neil M O'Brien-Simpson, Julien Tailhades, Namfon Pantarat, Raymond M Dawson, Laszlo Otvos, Eric C Reynolds, Frances Separovic, Mohammed Akhter Hossain, John D Wade","doi":"10.1016/j.chembiol.2015.08.011","DOIUrl":null,"url":null,"abstract":"<p><p>A3-APO, a de novo designed branched dimeric proline-rich antimicrobial peptide (PrAMP), is highly effective against a variety of in vivo bacterial infections. We undertook a selective examination of the mechanism for the Gram-negative Escherichia coli bacterial membrane interaction of the monomer (Chex-Arg20), dimer (A3-APO), and tetramer (A3-APO disulfide-linked dimer). All three synthetic peptides were effective at killing E. coli. However, the tetramer was 30-fold more membrane disruptive than the dimer while the monomer showed no membrane activity. Using flow cytometry and high-resolution fluorescent microscopy, it was observed that dimerization and tetramerization of the Chex-Arg20 monomer led to an alteration in the mechanism of action from non-lytic/membrane hyperpolarization to membrane disruption/depolarization. Our findings show that the membrane interaction and permeability of Chex-Arg20 was altered by multimerization.</p>","PeriodicalId":9772,"journal":{"name":"Chemistry & biology","volume":" ","pages":"1250-8"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.chembiol.2015.08.011","citationCount":"48","resultStr":"{\"title\":\"Multimerization of a Proline-Rich Antimicrobial Peptide, Chex-Arg20, Alters Its Mechanism of Interaction with the Escherichia coli Membrane.\",\"authors\":\"Wenyi Li, Neil M O'Brien-Simpson, Julien Tailhades, Namfon Pantarat, Raymond M Dawson, Laszlo Otvos, Eric C Reynolds, Frances Separovic, Mohammed Akhter Hossain, John D Wade\",\"doi\":\"10.1016/j.chembiol.2015.08.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A3-APO, a de novo designed branched dimeric proline-rich antimicrobial peptide (PrAMP), is highly effective against a variety of in vivo bacterial infections. We undertook a selective examination of the mechanism for the Gram-negative Escherichia coli bacterial membrane interaction of the monomer (Chex-Arg20), dimer (A3-APO), and tetramer (A3-APO disulfide-linked dimer). All three synthetic peptides were effective at killing E. coli. However, the tetramer was 30-fold more membrane disruptive than the dimer while the monomer showed no membrane activity. Using flow cytometry and high-resolution fluorescent microscopy, it was observed that dimerization and tetramerization of the Chex-Arg20 monomer led to an alteration in the mechanism of action from non-lytic/membrane hyperpolarization to membrane disruption/depolarization. Our findings show that the membrane interaction and permeability of Chex-Arg20 was altered by multimerization.</p>\",\"PeriodicalId\":9772,\"journal\":{\"name\":\"Chemistry & biology\",\"volume\":\" \",\"pages\":\"1250-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.chembiol.2015.08.011\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry & biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chembiol.2015.08.011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry & biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chembiol.2015.08.011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multimerization of a Proline-Rich Antimicrobial Peptide, Chex-Arg20, Alters Its Mechanism of Interaction with the Escherichia coli Membrane.
A3-APO, a de novo designed branched dimeric proline-rich antimicrobial peptide (PrAMP), is highly effective against a variety of in vivo bacterial infections. We undertook a selective examination of the mechanism for the Gram-negative Escherichia coli bacterial membrane interaction of the monomer (Chex-Arg20), dimer (A3-APO), and tetramer (A3-APO disulfide-linked dimer). All three synthetic peptides were effective at killing E. coli. However, the tetramer was 30-fold more membrane disruptive than the dimer while the monomer showed no membrane activity. Using flow cytometry and high-resolution fluorescent microscopy, it was observed that dimerization and tetramerization of the Chex-Arg20 monomer led to an alteration in the mechanism of action from non-lytic/membrane hyperpolarization to membrane disruption/depolarization. Our findings show that the membrane interaction and permeability of Chex-Arg20 was altered by multimerization.