燃气轮机相关工况下火焰-壁相互作用的直接数值模拟

IF 5.3 2区 工程技术 Q2 ENERGY & FUELS Proceedings of the Combustion Institute Pub Date : 2023-01-01 DOI:10.1016/j.proci.2022.09.022
Kai Niemietz , Lukas Berger , Michael Huth , Antonio Attili , Heinz Pitsch
{"title":"燃气轮机相关工况下火焰-壁相互作用的直接数值模拟","authors":"Kai Niemietz ,&nbsp;Lukas Berger ,&nbsp;Michael Huth ,&nbsp;Antonio Attili ,&nbsp;Heinz Pitsch","doi":"10.1016/j.proci.2022.09.022","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>A direct numerical simulation<span> (DNS) with finite rate chemistry was performed to evaluate the main influences on carbon monoxide (CO) emissions in </span></span>gas turbine combustion<span><span>. A lean methane/air mixture is burned in fully turbulent jet flames in a domain enclosed by isothermal<span> walls. The formation of CO is found to be affected by the mean strain rate of<span> the turbulent flow, the flame-wall interaction (FWI), and the interactions of the flame with the recirculation zones of the flow. The CO production and consumption in the turbulent flame differ strongly from the reaction rates in a freely propagating flame. In the upstream part of the domain, the mean strain rate of the turbulent flow mainly affects the CO formation, while wall heat loss influences the CO </span></span></span>oxidation process<span> towards the end of the domain, where the strain rate decreases. In an optimal estimator analysis, the relevant parameters that dominate the formation and consumption of CO are identified as the local CO mass fraction </span></span></span><span><math><msub><mi>Y</mi><mtext>CO</mtext></msub></math></span>, the wall heat loss, described by the enthalpy defect <span><math><mrow><mstyle><mi>Δ</mi></mstyle><mi>h</mi></mrow></math></span>, and the mass fraction of the OH radical <span><math><msub><mi>Y</mi><mtext>OH</mtext></msub></math></span>. The heat loss is particularly influential close to the wall while the effects far from the wall are negligible. Using the local CO mass fraction as parameter describes the late-stage oxidation of CO well in the entire domain. In particular, <span><math><msub><mi>Y</mi><mtext>CO</mtext></msub></math></span> should not be neglected at the wall. <span><math><msub><mi>Y</mi><mtext>OH</mtext></msub></math></span> is well suited to describe the processes involved in CO oxidation, as it both parameterizes the turbulent strain and is the main reaction partner for CO oxidation. The combination of <span><math><msub><mi>Y</mi><mtext>CO</mtext></msub></math></span> and <span><math><mrow><mstyle><mi>Δ</mi></mstyle><mi>h</mi></mrow></math></span> was able to improve the domain-averaged irreducible error by almost half compared to only a progress variable. Adding <span><math><msub><mi>Y</mi><mtext>OH</mtext></msub></math></span> to the parameter set further reduced the error to 25% of the original error.</p></div>","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"39 2","pages":"Pages 2209-2218"},"PeriodicalIF":5.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Direct numerical simulation of flame-wall interaction at gas turbine relevant conditions\",\"authors\":\"Kai Niemietz ,&nbsp;Lukas Berger ,&nbsp;Michael Huth ,&nbsp;Antonio Attili ,&nbsp;Heinz Pitsch\",\"doi\":\"10.1016/j.proci.2022.09.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>A direct numerical simulation<span> (DNS) with finite rate chemistry was performed to evaluate the main influences on carbon monoxide (CO) emissions in </span></span>gas turbine combustion<span><span>. A lean methane/air mixture is burned in fully turbulent jet flames in a domain enclosed by isothermal<span> walls. The formation of CO is found to be affected by the mean strain rate of<span> the turbulent flow, the flame-wall interaction (FWI), and the interactions of the flame with the recirculation zones of the flow. The CO production and consumption in the turbulent flame differ strongly from the reaction rates in a freely propagating flame. In the upstream part of the domain, the mean strain rate of the turbulent flow mainly affects the CO formation, while wall heat loss influences the CO </span></span></span>oxidation process<span> towards the end of the domain, where the strain rate decreases. In an optimal estimator analysis, the relevant parameters that dominate the formation and consumption of CO are identified as the local CO mass fraction </span></span></span><span><math><msub><mi>Y</mi><mtext>CO</mtext></msub></math></span>, the wall heat loss, described by the enthalpy defect <span><math><mrow><mstyle><mi>Δ</mi></mstyle><mi>h</mi></mrow></math></span>, and the mass fraction of the OH radical <span><math><msub><mi>Y</mi><mtext>OH</mtext></msub></math></span>. The heat loss is particularly influential close to the wall while the effects far from the wall are negligible. Using the local CO mass fraction as parameter describes the late-stage oxidation of CO well in the entire domain. In particular, <span><math><msub><mi>Y</mi><mtext>CO</mtext></msub></math></span> should not be neglected at the wall. <span><math><msub><mi>Y</mi><mtext>OH</mtext></msub></math></span> is well suited to describe the processes involved in CO oxidation, as it both parameterizes the turbulent strain and is the main reaction partner for CO oxidation. The combination of <span><math><msub><mi>Y</mi><mtext>CO</mtext></msub></math></span> and <span><math><mrow><mstyle><mi>Δ</mi></mstyle><mi>h</mi></mrow></math></span> was able to improve the domain-averaged irreducible error by almost half compared to only a progress variable. Adding <span><math><msub><mi>Y</mi><mtext>OH</mtext></msub></math></span> to the parameter set further reduced the error to 25% of the original error.</p></div>\",\"PeriodicalId\":408,\"journal\":{\"name\":\"Proceedings of the Combustion Institute\",\"volume\":\"39 2\",\"pages\":\"Pages 2209-2218\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Combustion Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1540748922003698\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Combustion Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1540748922003698","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 2

摘要

采用有限速率化学直接数值模拟方法,对影响燃气轮机燃烧过程中一氧化碳排放的主要因素进行了数值模拟。稀薄的甲烷/空气混合物在完全湍流的射流火焰中在等温壁包围的区域内燃烧。发现CO的形成受湍流的平均应变速率、火焰-壁面相互作用(FWI)以及火焰与流动的再循环区相互作用的影响。湍流火焰中CO的产生和消耗与自由传播火焰中的反应速率有很大的不同。在畴的上游,湍流的平均应变速率主要影响CO的形成,而在畴的末端,壁面热损失影响CO的氧化过程,应变速率减小。在最优估计分析中,确定了影响CO形成和消耗的相关参数为局部CO质量分数YCO,由焓缺陷Δh描述的壁热损失,以及OH自由基的质量分数YOH。热损失在靠近壁面的地方影响特别大,而远离壁面的影响可以忽略不计。以局部CO质量分数为参数,较好地描述了整个区域CO的后期氧化过程。特别是,YCO不应该被忽视。YOH非常适合描述CO氧化过程,因为它既参数化了湍流应变,又是CO氧化的主要反应伙伴。与仅使用进度变量相比,YCO和Δh的组合能够将域平均不可约误差提高近一半。在参数集中加入YOH进一步将误差减小到原始误差的25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Direct numerical simulation of flame-wall interaction at gas turbine relevant conditions

A direct numerical simulation (DNS) with finite rate chemistry was performed to evaluate the main influences on carbon monoxide (CO) emissions in gas turbine combustion. A lean methane/air mixture is burned in fully turbulent jet flames in a domain enclosed by isothermal walls. The formation of CO is found to be affected by the mean strain rate of the turbulent flow, the flame-wall interaction (FWI), and the interactions of the flame with the recirculation zones of the flow. The CO production and consumption in the turbulent flame differ strongly from the reaction rates in a freely propagating flame. In the upstream part of the domain, the mean strain rate of the turbulent flow mainly affects the CO formation, while wall heat loss influences the CO oxidation process towards the end of the domain, where the strain rate decreases. In an optimal estimator analysis, the relevant parameters that dominate the formation and consumption of CO are identified as the local CO mass fraction YCO, the wall heat loss, described by the enthalpy defect Δh, and the mass fraction of the OH radical YOH. The heat loss is particularly influential close to the wall while the effects far from the wall are negligible. Using the local CO mass fraction as parameter describes the late-stage oxidation of CO well in the entire domain. In particular, YCO should not be neglected at the wall. YOH is well suited to describe the processes involved in CO oxidation, as it both parameterizes the turbulent strain and is the main reaction partner for CO oxidation. The combination of YCO and Δh was able to improve the domain-averaged irreducible error by almost half compared to only a progress variable. Adding YOH to the parameter set further reduced the error to 25% of the original error.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the Combustion Institute
Proceedings of the Combustion Institute 工程技术-工程:化工
CiteScore
7.00
自引率
0.00%
发文量
420
审稿时长
3.0 months
期刊介绍: The Proceedings of the Combustion Institute contains forefront contributions in fundamentals and applications of combustion science. For more than 50 years, the Combustion Institute has served as the peak international society for dissemination of scientific and technical research in the combustion field. In addition to author submissions, the Proceedings of the Combustion Institute includes the Institute''s prestigious invited strategic and topical reviews that represent indispensable resources for emergent research in the field. All papers are subjected to rigorous peer review. Research papers and invited topical reviews; Reaction Kinetics; Soot, PAH, and other large molecules; Diagnostics; Laminar Flames; Turbulent Flames; Heterogeneous Combustion; Spray and Droplet Combustion; Detonations, Explosions & Supersonic Combustion; Fire Research; Stationary Combustion Systems; IC Engine and Gas Turbine Combustion; New Technology Concepts The electronic version of Proceedings of the Combustion Institute contains supplemental material such as reaction mechanisms, illustrating movies, and other data.
期刊最新文献
Numerical study on detonation initiation by multiple hot spots Understanding the impact of molecular structure on the formation of stable intermediates during the pyrolysis of monoalkylated cyclohexanes in a shock tube Co-firing ammonia and hydrogen with butane under methane-equivalent calorific value and Wobbe index: Insights into transition in flame propagation and swirl flame characteristics Forced ignition of cool, warm and hot flames in a laminar non-premixed counterflow of DME versus air DMD analysis on sporadic flame behaviors in low-Lewis-number counterflow under microgravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1