Valentina Licheri, Giuseppe Talani, Ashish A Gorule, Maria Cristina Mostallino, Giovanni Biggio, Enrico Sanna
{"title":"GABAA受体在孕期和产后的可塑性:从基因到功能。","authors":"Valentina Licheri, Giuseppe Talani, Ashish A Gorule, Maria Cristina Mostallino, Giovanni Biggio, Enrico Sanna","doi":"10.1155/2015/170435","DOIUrl":null,"url":null,"abstract":"<p><p>Pregnancy needs complex pathways that together play a role in proper growth and protection of the fetus preventing its premature loss. Changes during pregnancy and postpartum period include the manifold machinery of neuroactive steroids that plays a crucial role in neuronal excitability by local modulation of specific inhibitory receptors: the GABAA receptors. Marked fluctuations in both blood and brain concentration of neuroactive steroids strongly contribute to GABAA receptor function and plasticity. In this review, we listed several interesting results regarding the regulation and plasticity of GABAA receptor function during pregnancy and postpartum period in rats. The increase in brain levels of neuroactive steroids during pregnancy and their sudden decrease immediately before delivery are causally related to changes in the expression/function of specific GABAA receptor subunits in the hippocampus. These data suggest that alterations in GABAA receptor expression and function may be related to neurological and psychiatric disorders associated with crucial periods in women. These findings could help to provide potential new treatments for these women's disabling syndromes. </p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2015 ","pages":"170435"},"PeriodicalIF":3.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/170435","citationCount":"21","resultStr":"{\"title\":\"Plasticity of GABAA Receptors during Pregnancy and Postpartum Period: From Gene to Function.\",\"authors\":\"Valentina Licheri, Giuseppe Talani, Ashish A Gorule, Maria Cristina Mostallino, Giovanni Biggio, Enrico Sanna\",\"doi\":\"10.1155/2015/170435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pregnancy needs complex pathways that together play a role in proper growth and protection of the fetus preventing its premature loss. Changes during pregnancy and postpartum period include the manifold machinery of neuroactive steroids that plays a crucial role in neuronal excitability by local modulation of specific inhibitory receptors: the GABAA receptors. Marked fluctuations in both blood and brain concentration of neuroactive steroids strongly contribute to GABAA receptor function and plasticity. In this review, we listed several interesting results regarding the regulation and plasticity of GABAA receptor function during pregnancy and postpartum period in rats. The increase in brain levels of neuroactive steroids during pregnancy and their sudden decrease immediately before delivery are causally related to changes in the expression/function of specific GABAA receptor subunits in the hippocampus. These data suggest that alterations in GABAA receptor expression and function may be related to neurological and psychiatric disorders associated with crucial periods in women. These findings could help to provide potential new treatments for these women's disabling syndromes. </p>\",\"PeriodicalId\":51299,\"journal\":{\"name\":\"Neural Plasticity\",\"volume\":\"2015 \",\"pages\":\"170435\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2015/170435\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Plasticity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2015/170435\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/8/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Plasticity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2015/170435","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/8/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Plasticity of GABAA Receptors during Pregnancy and Postpartum Period: From Gene to Function.
Pregnancy needs complex pathways that together play a role in proper growth and protection of the fetus preventing its premature loss. Changes during pregnancy and postpartum period include the manifold machinery of neuroactive steroids that plays a crucial role in neuronal excitability by local modulation of specific inhibitory receptors: the GABAA receptors. Marked fluctuations in both blood and brain concentration of neuroactive steroids strongly contribute to GABAA receptor function and plasticity. In this review, we listed several interesting results regarding the regulation and plasticity of GABAA receptor function during pregnancy and postpartum period in rats. The increase in brain levels of neuroactive steroids during pregnancy and their sudden decrease immediately before delivery are causally related to changes in the expression/function of specific GABAA receptor subunits in the hippocampus. These data suggest that alterations in GABAA receptor expression and function may be related to neurological and psychiatric disorders associated with crucial periods in women. These findings could help to provide potential new treatments for these women's disabling syndromes.
期刊介绍:
Neural Plasticity is an international, interdisciplinary journal dedicated to the publication of articles related to all aspects of neural plasticity, with special emphasis on its functional significance as reflected in behavior and in psychopathology. Neural Plasticity publishes research and review articles from the entire range of relevant disciplines, including basic neuroscience, behavioral neuroscience, cognitive neuroscience, biological psychology, and biological psychiatry.