{"title":"基于层次树结构的DNA序列自适应差分编码。","authors":"Wenrui Dai, Hongkai Xiong, Xiaoqian Jiang, Lucila Ohno-Machado","doi":"10.1109/DCC.2013.45","DOIUrl":null,"url":null,"abstract":"<p><p>Previous reference-based compression on DNA sequences do not fully exploit the intrinsic statistics by merely concerning the approximate matches. In this paper, an adaptive difference distribution-based coding framework is proposed by the fragments of nucleotides with a hierarchical tree structure. To keep the distribution of difference sequence from the reference and target sequences concentrated, the sub-fragment size and matching offset for predicting are flexible to the stepped size structure. The matching with approximate repeats in reference will be imposed with the Hamming-like weighted distance measure function in a local region closed to the current fragment, such that the accuracy of matching and the overhead of describing matching offset can be balanced. A well-designed coding scheme will make compact both the difference sequence and the additional parameters, e.g. sub-fragment size and matching offset. Experimental results show that the proposed scheme achieves 150% compression improvement in comparison with the best reference-based compressor GReEn.</p>","PeriodicalId":91161,"journal":{"name":"Proceedings. Data Compression Conference","volume":"2013 ","pages":"371-380"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/DCC.2013.45","citationCount":"5","resultStr":"{\"title\":\"An Adaptive Difference Distribution-based Coding with Hierarchical Tree Structure for DNA Sequence Compression.\",\"authors\":\"Wenrui Dai, Hongkai Xiong, Xiaoqian Jiang, Lucila Ohno-Machado\",\"doi\":\"10.1109/DCC.2013.45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Previous reference-based compression on DNA sequences do not fully exploit the intrinsic statistics by merely concerning the approximate matches. In this paper, an adaptive difference distribution-based coding framework is proposed by the fragments of nucleotides with a hierarchical tree structure. To keep the distribution of difference sequence from the reference and target sequences concentrated, the sub-fragment size and matching offset for predicting are flexible to the stepped size structure. The matching with approximate repeats in reference will be imposed with the Hamming-like weighted distance measure function in a local region closed to the current fragment, such that the accuracy of matching and the overhead of describing matching offset can be balanced. A well-designed coding scheme will make compact both the difference sequence and the additional parameters, e.g. sub-fragment size and matching offset. Experimental results show that the proposed scheme achieves 150% compression improvement in comparison with the best reference-based compressor GReEn.</p>\",\"PeriodicalId\":91161,\"journal\":{\"name\":\"Proceedings. Data Compression Conference\",\"volume\":\"2013 \",\"pages\":\"371-380\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/DCC.2013.45\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.2013.45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/3/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2013.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/3/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
An Adaptive Difference Distribution-based Coding with Hierarchical Tree Structure for DNA Sequence Compression.
Previous reference-based compression on DNA sequences do not fully exploit the intrinsic statistics by merely concerning the approximate matches. In this paper, an adaptive difference distribution-based coding framework is proposed by the fragments of nucleotides with a hierarchical tree structure. To keep the distribution of difference sequence from the reference and target sequences concentrated, the sub-fragment size and matching offset for predicting are flexible to the stepped size structure. The matching with approximate repeats in reference will be imposed with the Hamming-like weighted distance measure function in a local region closed to the current fragment, such that the accuracy of matching and the overhead of describing matching offset can be balanced. A well-designed coding scheme will make compact both the difference sequence and the additional parameters, e.g. sub-fragment size and matching offset. Experimental results show that the proposed scheme achieves 150% compression improvement in comparison with the best reference-based compressor GReEn.