[吸附缓冲液pH对固定在聚苯乙烯微孔板表面的单克隆抗体数量和抗原结合活性的影响]。

Yu N Tarakanova, A D Dmitriev, Yu S Massino, A A Pechelulko, O L Segal, Yu O Skoblov, T I Ulanova, V F Lavrov, D A Dmitriev
{"title":"[吸附缓冲液pH对固定在聚苯乙烯微孔板表面的单克隆抗体数量和抗原结合活性的影响]。","authors":"Yu N Tarakanova,&nbsp;A D Dmitriev,&nbsp;Yu S Massino,&nbsp;A A Pechelulko,&nbsp;O L Segal,&nbsp;Yu O Skoblov,&nbsp;T I Ulanova,&nbsp;V F Lavrov,&nbsp;D A Dmitriev","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The change in the concentration and antigen-binding activity of 28 monoclonal antibodies was studied after their adsorption on the surface of polystyrene microplates in buffers with different pH values (1.0, 2.8, 7.5, 9.6, and 11.9). We used 16 clones to the HIV p24 protein and 12 clones to the surface antigen of Hepatitis B Virus. The binding efficiency of adsorbed antibodies to the labeled antigen was evaluated by the slope of the linear region of the binding curve to the concentration axis. It was shown that the antigen-binding activity of six antibodies (21.5%) statistically significantly increased after adsorption at pH 2.8 and 11.9 as compared to pH 7.5 and 9.5. The maximum amount of antibodies was found to be adsorbed on the solid surface at pH 7.5. The analysis of the binding of 125I-HBs-antigen to adsorbed antibodies made it possible to evaluate the concentration of active antibodies on the polystyrene surface. It was shown that the increase in the antigen-binding activity was due to an increase in the proportion of antibodies with retained activity after adsorption at pH 2.8 and 11.9. Under these conditions, about 20% of the antibodies retained their antigen-binding activity, and 6% did so after immobilization at pH 7.5.</p>","PeriodicalId":20415,"journal":{"name":"Prikladnaia biokhimiia i mikrobiologiia","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Effect of pH of Adsorption Buffers on the Number and Antigen-Binding Activity of Monoclonal Antibodies Immobilized on the Surface of Polystyrene Microplates].\",\"authors\":\"Yu N Tarakanova,&nbsp;A D Dmitriev,&nbsp;Yu S Massino,&nbsp;A A Pechelulko,&nbsp;O L Segal,&nbsp;Yu O Skoblov,&nbsp;T I Ulanova,&nbsp;V F Lavrov,&nbsp;D A Dmitriev\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The change in the concentration and antigen-binding activity of 28 monoclonal antibodies was studied after their adsorption on the surface of polystyrene microplates in buffers with different pH values (1.0, 2.8, 7.5, 9.6, and 11.9). We used 16 clones to the HIV p24 protein and 12 clones to the surface antigen of Hepatitis B Virus. The binding efficiency of adsorbed antibodies to the labeled antigen was evaluated by the slope of the linear region of the binding curve to the concentration axis. It was shown that the antigen-binding activity of six antibodies (21.5%) statistically significantly increased after adsorption at pH 2.8 and 11.9 as compared to pH 7.5 and 9.5. The maximum amount of antibodies was found to be adsorbed on the solid surface at pH 7.5. The analysis of the binding of 125I-HBs-antigen to adsorbed antibodies made it possible to evaluate the concentration of active antibodies on the polystyrene surface. It was shown that the increase in the antigen-binding activity was due to an increase in the proportion of antibodies with retained activity after adsorption at pH 2.8 and 11.9. Under these conditions, about 20% of the antibodies retained their antigen-binding activity, and 6% did so after immobilization at pH 7.5.</p>\",\"PeriodicalId\":20415,\"journal\":{\"name\":\"Prikladnaia biokhimiia i mikrobiologiia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Prikladnaia biokhimiia i mikrobiologiia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prikladnaia biokhimiia i mikrobiologiia","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了28种单克隆抗体在不同pH值(1.0、2.8、7.5、9.6、11.9)缓冲液中吸附在聚苯乙烯微孔板表面后,其浓度和抗原结合活性的变化。我们用16个克隆克隆了HIV p24蛋白,12个克隆克隆了乙肝病毒表面抗原。通过结合曲线线性区域与浓度轴的斜率来评价吸附抗体与标记抗原的结合效率。结果表明,与pH 7.5和9.5相比,pH 2.8和11.9吸附后6种抗体(21.5%)的抗原结合活性显著提高。在pH为7.5时,抗体在固体表面的吸附量最大。通过分析125i - hbs抗原与吸附抗体的结合,可以评估聚苯乙烯表面活性抗体的浓度。结果表明,抗原结合活性的增加是由于在pH为2.8和11.9时吸附后保留活性的抗体比例增加所致。在这些条件下,大约20%的抗体保留了它们的抗原结合活性,6%的抗体在pH 7.5固定后保持了它们的抗原结合活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[Effect of pH of Adsorption Buffers on the Number and Antigen-Binding Activity of Monoclonal Antibodies Immobilized on the Surface of Polystyrene Microplates].

The change in the concentration and antigen-binding activity of 28 monoclonal antibodies was studied after their adsorption on the surface of polystyrene microplates in buffers with different pH values (1.0, 2.8, 7.5, 9.6, and 11.9). We used 16 clones to the HIV p24 protein and 12 clones to the surface antigen of Hepatitis B Virus. The binding efficiency of adsorbed antibodies to the labeled antigen was evaluated by the slope of the linear region of the binding curve to the concentration axis. It was shown that the antigen-binding activity of six antibodies (21.5%) statistically significantly increased after adsorption at pH 2.8 and 11.9 as compared to pH 7.5 and 9.5. The maximum amount of antibodies was found to be adsorbed on the solid surface at pH 7.5. The analysis of the binding of 125I-HBs-antigen to adsorbed antibodies made it possible to evaluate the concentration of active antibodies on the polystyrene surface. It was shown that the increase in the antigen-binding activity was due to an increase in the proportion of antibodies with retained activity after adsorption at pH 2.8 and 11.9. Under these conditions, about 20% of the antibodies retained their antigen-binding activity, and 6% did so after immobilization at pH 7.5.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[Nodulation competitiveness of nodule bacteria: Genetic control and adaptive significance]. [Flavonoid oxidation kinetics in aqueous and aqueous organic media in the presence of peroxidase, tyrosynase, and hemoglobin]. [Functionality of Metdi5511gene in Methylobacterium dichloromethanicum DM4]. [Peroxidase activity of octaheme nitrite reductases from bacteria of the Thioalkalivibrio genus]. [Immunity of a leguminous plant infected by nodular bacteria Rhizobium spp. F.]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1