[琥珀酸盐对大鼠肝脏线粒体脂质过氧化作用的年龄相关性研究]。

Biofizika Pub Date : 2015-07-01
E V Grishina, Ya V Khaustova, A A Vasilieva, E I Mayevsky
{"title":"[琥珀酸盐对大鼠肝脏线粒体脂质过氧化作用的年龄相关性研究]。","authors":"E V Grishina,&nbsp;Ya V Khaustova,&nbsp;A A Vasilieva,&nbsp;E I Mayevsky","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The antioxidant effect of succinate and 3-hydroxybutyrate oxidation on the kinetics of lipid peroxidation induced by ATP-Fe2+ complex in isolated rat liver mitochondria of old (1.0-1.5 years) and young (3 months) male rats was investigated. The rate of induced lipid peroxidation V(LPO) in rat liver mitochondria and the half-time of oxygen consumption Δt50, which included the lag period and the initiation. phase, was recorded polarographically. Without exogenous oxidative-substrates V(LPO) was slightly higher in mitochondria of old animals, but the onset of lipid peroxidation cascade was significantly earlier than in young animals. Incubation of mitochondria with 5mM succinate for 1 min inhibited V(LPO) by 15% in young animals and by 35% in old animals. However, only in mitochondria of old animals Δt50 increased by 19% as compared to lipid peroxidation without substrates. V(LPO) in mitochondria of young animals did not significantly change during 3-hydroxybutyrate oxidation, while in mitochondria of old animals it was reduced by 19% with a slight increase in Δt50. To simulate age-dependent dysfunction we damaged isolated mitochondria by a series of freeze-thaw cycles, which caused a significant increase of V(LPO) of.both age groups. Succinate oxidation inhibited V(LPO) in damaged mitochondria in all cases by 56%, as compared to V(LPO) without oxidative substrates and extended At50 twofold in mitochondria of young animals. Oxidation of 3-hydroxybutyrate had no effect on V(LPO) in damaged mitochondria regardless of animal, age and extended Δt50 by 48% in mitochondria of young animals. Thus, the antioxidant effect of succinate oxidation can prevent lipid peroxidation damage and may exhibit geroprotective action at the level of aging mitochondria. Therefore, the antioxidant effect is due to the process of substrate oxidation in the respiratory chain but not because of an interaction of their structures with membrane lipids per se.</p>","PeriodicalId":8942,"journal":{"name":"Biofizika","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Age-related Peculiarities of Succinate Effect on Induced Lipid Peroxidation in Rat Liver Mitochondria].\",\"authors\":\"E V Grishina,&nbsp;Ya V Khaustova,&nbsp;A A Vasilieva,&nbsp;E I Mayevsky\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The antioxidant effect of succinate and 3-hydroxybutyrate oxidation on the kinetics of lipid peroxidation induced by ATP-Fe2+ complex in isolated rat liver mitochondria of old (1.0-1.5 years) and young (3 months) male rats was investigated. The rate of induced lipid peroxidation V(LPO) in rat liver mitochondria and the half-time of oxygen consumption Δt50, which included the lag period and the initiation. phase, was recorded polarographically. Without exogenous oxidative-substrates V(LPO) was slightly higher in mitochondria of old animals, but the onset of lipid peroxidation cascade was significantly earlier than in young animals. Incubation of mitochondria with 5mM succinate for 1 min inhibited V(LPO) by 15% in young animals and by 35% in old animals. However, only in mitochondria of old animals Δt50 increased by 19% as compared to lipid peroxidation without substrates. V(LPO) in mitochondria of young animals did not significantly change during 3-hydroxybutyrate oxidation, while in mitochondria of old animals it was reduced by 19% with a slight increase in Δt50. To simulate age-dependent dysfunction we damaged isolated mitochondria by a series of freeze-thaw cycles, which caused a significant increase of V(LPO) of.both age groups. Succinate oxidation inhibited V(LPO) in damaged mitochondria in all cases by 56%, as compared to V(LPO) without oxidative substrates and extended At50 twofold in mitochondria of young animals. Oxidation of 3-hydroxybutyrate had no effect on V(LPO) in damaged mitochondria regardless of animal, age and extended Δt50 by 48% in mitochondria of young animals. Thus, the antioxidant effect of succinate oxidation can prevent lipid peroxidation damage and may exhibit geroprotective action at the level of aging mitochondria. Therefore, the antioxidant effect is due to the process of substrate oxidation in the respiratory chain but not because of an interaction of their structures with membrane lipids per se.</p>\",\"PeriodicalId\":8942,\"journal\":{\"name\":\"Biofizika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofizika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofizika","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了琥珀酸盐和3-羟基丁酸盐氧化对老年(1.0 ~ 1.5岁)和幼龄(3月龄)雄性大鼠离体肝脏线粒体ATP-Fe2+复合物诱导的脂质过氧化动力学的抗氧化作用。大鼠肝脏线粒体诱导脂质过氧化V(LPO)速率及耗氧半衰期Δt50,包括迟滞期和起始期。相,用极谱法记录。无外源性氧化底物V(LPO)在老龄动物线粒体中略高,但脂质过氧化级联的发生时间明显早于幼龄动物。线粒体与5mM琥珀酸盐孵育1分钟,对幼龄动物的LPO抑制率为15%,对老年动物的LPO抑制率为35%。然而,与无底物的脂质过氧化相比,仅在老年动物的线粒体Δt50增加了19%。幼龄动物线粒体V(LPO)在3-羟基丁酸氧化过程中变化不显著,老龄动物线粒体V(LPO)减少19%,Δt50略有增加。为了模拟年龄依赖性功能障碍,我们通过一系列的冻融循环来破坏离体线粒体,导致V(LPO)显著增加。两个年龄段都有。与不含氧化底物的V(LPO)相比,琥珀酸氧化在所有情况下都抑制了受损线粒体中V(LPO)的56%,并将幼鼠线粒体中的At50延长了两倍。氧化3-羟基丁酸对损伤线粒体中V(LPO)的影响不受动物和年龄的影响,并使幼龄动物线粒体中V(LPO)增加Δt50 48%。因此,琥珀酸氧化的抗氧化作用可以防止脂质过氧化损伤,并可能在衰老线粒体水平上表现出衰老保护作用。因此,抗氧化作用是由于呼吸链中的底物氧化过程,而不是由于它们的结构与膜脂本身的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[Age-related Peculiarities of Succinate Effect on Induced Lipid Peroxidation in Rat Liver Mitochondria].

The antioxidant effect of succinate and 3-hydroxybutyrate oxidation on the kinetics of lipid peroxidation induced by ATP-Fe2+ complex in isolated rat liver mitochondria of old (1.0-1.5 years) and young (3 months) male rats was investigated. The rate of induced lipid peroxidation V(LPO) in rat liver mitochondria and the half-time of oxygen consumption Δt50, which included the lag period and the initiation. phase, was recorded polarographically. Without exogenous oxidative-substrates V(LPO) was slightly higher in mitochondria of old animals, but the onset of lipid peroxidation cascade was significantly earlier than in young animals. Incubation of mitochondria with 5mM succinate for 1 min inhibited V(LPO) by 15% in young animals and by 35% in old animals. However, only in mitochondria of old animals Δt50 increased by 19% as compared to lipid peroxidation without substrates. V(LPO) in mitochondria of young animals did not significantly change during 3-hydroxybutyrate oxidation, while in mitochondria of old animals it was reduced by 19% with a slight increase in Δt50. To simulate age-dependent dysfunction we damaged isolated mitochondria by a series of freeze-thaw cycles, which caused a significant increase of V(LPO) of.both age groups. Succinate oxidation inhibited V(LPO) in damaged mitochondria in all cases by 56%, as compared to V(LPO) without oxidative substrates and extended At50 twofold in mitochondria of young animals. Oxidation of 3-hydroxybutyrate had no effect on V(LPO) in damaged mitochondria regardless of animal, age and extended Δt50 by 48% in mitochondria of young animals. Thus, the antioxidant effect of succinate oxidation can prevent lipid peroxidation damage and may exhibit geroprotective action at the level of aging mitochondria. Therefore, the antioxidant effect is due to the process of substrate oxidation in the respiratory chain but not because of an interaction of their structures with membrane lipids per se.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[Determination of the Minimal Fragment of the Poliovirus IRES Necessary for the Formation of a Specific Complex with the Human Glycyl-tRNA Synthetase]. [Analysis of Conformational Features of Watson-Crick Duplex Fragments by Molecular Mechanics and Quantum Mechanics Methods]. [Gelation in Low Concentrated Solutions of Cholesterol and Ergosterol]. [Interaction of Dystamycin Dimeric Analog with Poly(dA) x poly(dT), Poly[d(A-T)] x poly[d(A-T)] and Duplex O23 at Origin of Replication of the Herpes Simplex Virus]. [Forced Oscillations of DNA Bases].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1