先验知识对单分子荧光显微镜参数估计精度限制的影响。

Zhiping Lin, Yau Wong, Raimund J Ober
{"title":"先验知识对单分子荧光显微镜参数估计精度限制的影响。","authors":"Zhiping Lin, Yau Wong, Raimund J Ober","doi":"10.1109/ISCAS.2013.6572093","DOIUrl":null,"url":null,"abstract":"In estimation theory, it is known that prior knowledge of parameters can improve the Cramér-Rao lower bound (CRLB). In this paper, we study the influence of prior knowledge on the CRLB of the estimates of the parameters that describe the trajectory of a moving object (single molecule). Since the CRLB is obtained from the inverse of the Fisher information matrix, we present a general expression of the Fisher information matrix in terms of the image function, the object trajectory and the prior knowledge matrix. Applying this expression to an object moving linearly in a two-dimensional (2D) plane with two distinct cases of prior knowledge, explicit CRLB expressions are derived. From these expressions, we show that the improvement in the CRLB of the parameter estimates is dependent on which parameters are known.","PeriodicalId":91083,"journal":{"name":"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems","volume":"2013 ","pages":"1304-1307"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ISCAS.2013.6572093","citationCount":"2","resultStr":"{\"title\":\"Influence of Prior Knowledge on the Accuracy Limit of Parameter Estimation in Single-Molecule Fluorescence Microscopy.\",\"authors\":\"Zhiping Lin, Yau Wong, Raimund J Ober\",\"doi\":\"10.1109/ISCAS.2013.6572093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In estimation theory, it is known that prior knowledge of parameters can improve the Cramér-Rao lower bound (CRLB). In this paper, we study the influence of prior knowledge on the CRLB of the estimates of the parameters that describe the trajectory of a moving object (single molecule). Since the CRLB is obtained from the inverse of the Fisher information matrix, we present a general expression of the Fisher information matrix in terms of the image function, the object trajectory and the prior knowledge matrix. Applying this expression to an object moving linearly in a two-dimensional (2D) plane with two distinct cases of prior knowledge, explicit CRLB expressions are derived. From these expressions, we show that the improvement in the CRLB of the parameter estimates is dependent on which parameters are known.\",\"PeriodicalId\":91083,\"journal\":{\"name\":\"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems\",\"volume\":\"2013 \",\"pages\":\"1304-1307\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/ISCAS.2013.6572093\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2013.6572093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2013.6572093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在估计理论中,已知参数的先验知识可以改善cram - rao下界(CRLB)。在本文中,我们研究了先验知识对描述运动物体(单分子)轨迹参数估计的CRLB的影响。由于CRLB是由Fisher信息矩阵的逆得到的,因此我们给出了Fisher信息矩阵在图像函数、目标轨迹和先验知识矩阵方面的一般表达式。将此表达式应用于具有两种不同先验知识的二维(2D)平面线性移动的对象,推导出显式CRLB表达式。从这些表达式中,我们证明了参数估计的CRLB的改进取决于哪些参数是已知的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of Prior Knowledge on the Accuracy Limit of Parameter Estimation in Single-Molecule Fluorescence Microscopy.
In estimation theory, it is known that prior knowledge of parameters can improve the Cramér-Rao lower bound (CRLB). In this paper, we study the influence of prior knowledge on the CRLB of the estimates of the parameters that describe the trajectory of a moving object (single molecule). Since the CRLB is obtained from the inverse of the Fisher information matrix, we present a general expression of the Fisher information matrix in terms of the image function, the object trajectory and the prior knowledge matrix. Applying this expression to an object moving linearly in a two-dimensional (2D) plane with two distinct cases of prior knowledge, explicit CRLB expressions are derived. From these expressions, we show that the improvement in the CRLB of the parameter estimates is dependent on which parameters are known.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
0
期刊最新文献
Design of Compensator for Modified Multistage CIC-Based Decimation Filter with Improved Characteristics Using the Miller Theorem to Analyze Two-Stage Miller-Compensated Opamps Analog processing by digital gates: fully synthesizable IC design for IoT interfaces A Parallel Radix-2 k FFT Processor using Single-Port Merged-Bank Memory Differential Fowler-Nordheim Tunneling Dynamical System for Attojoule Sensing and Recording.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1