基于自然语言处理和群体可视化的案例检索系统。

William Hsu, Ricky K Taira, Fernando Viñuela, Alex A T Bui
{"title":"基于自然语言处理和群体可视化的案例检索系统。","authors":"William Hsu,&nbsp;Ricky K Taira,&nbsp;Fernando Viñuela,&nbsp;Alex A T Bui","doi":"10.1109/HISB.2011.3","DOIUrl":null,"url":null,"abstract":"<p><p>Electronic medical records capture large quantities of patient data generated as a result of routine care. Secondary use of this data for clinical research could provide new insights into the evolution of diseases and help assess the effectiveness of available interventions. Unfortunately, the unstructured nature of clinical data hinders a user's ability to understand this data: tools are needed to structure, model, and visualize the data to elucidate patterns in a patient population. We present a case-based retrieval framework that incorporates an extraction tool to identify concepts from clinical reports, a disease model to capture necessary context for interpreting extracted concepts, and a model-driven visualization to facilitate querying and interpretation of the results. We describe how the model is used to group, filter, and retrieve similar cases. We present an application of the framework that aids users in exploring a population of intracranial aneurysm patients.</p>","PeriodicalId":91600,"journal":{"name":"Proceedings. IEEE International Conference on Healthcare Informatics, Imaging and Systems Biology","volume":"2011 ","pages":"221-228"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/HISB.2011.3","citationCount":"4","resultStr":"{\"title\":\"A Case-based Retrieval System using Natural Language Processing and Population-based Visualization.\",\"authors\":\"William Hsu,&nbsp;Ricky K Taira,&nbsp;Fernando Viñuela,&nbsp;Alex A T Bui\",\"doi\":\"10.1109/HISB.2011.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electronic medical records capture large quantities of patient data generated as a result of routine care. Secondary use of this data for clinical research could provide new insights into the evolution of diseases and help assess the effectiveness of available interventions. Unfortunately, the unstructured nature of clinical data hinders a user's ability to understand this data: tools are needed to structure, model, and visualize the data to elucidate patterns in a patient population. We present a case-based retrieval framework that incorporates an extraction tool to identify concepts from clinical reports, a disease model to capture necessary context for interpreting extracted concepts, and a model-driven visualization to facilitate querying and interpretation of the results. We describe how the model is used to group, filter, and retrieve similar cases. We present an application of the framework that aids users in exploring a population of intracranial aneurysm patients.</p>\",\"PeriodicalId\":91600,\"journal\":{\"name\":\"Proceedings. IEEE International Conference on Healthcare Informatics, Imaging and Systems Biology\",\"volume\":\"2011 \",\"pages\":\"221-228\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/HISB.2011.3\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE International Conference on Healthcare Informatics, Imaging and Systems Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HISB.2011.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Conference on Healthcare Informatics, Imaging and Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HISB.2011.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

电子医疗记录捕获了常规护理产生的大量患者数据。将这些数据二次用于临床研究可以为疾病的演变提供新的见解,并有助于评估现有干预措施的有效性。不幸的是,临床数据的非结构化性质阻碍了用户理解这些数据的能力:需要工具来对数据进行结构化、建模和可视化,以阐明患者群体中的模式。我们提出了一个基于病例的检索框架,该框架包含一个提取工具,用于从临床报告中识别概念,一个疾病模型,用于捕获解释提取概念所需的上下文,以及一个模型驱动的可视化,以促进查询和解释结果。我们描述了如何使用模型对类似的案例进行分组、过滤和检索。我们提出了一个应用框架,帮助用户探索颅内动脉瘤患者的人口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Case-based Retrieval System using Natural Language Processing and Population-based Visualization.

Electronic medical records capture large quantities of patient data generated as a result of routine care. Secondary use of this data for clinical research could provide new insights into the evolution of diseases and help assess the effectiveness of available interventions. Unfortunately, the unstructured nature of clinical data hinders a user's ability to understand this data: tools are needed to structure, model, and visualize the data to elucidate patterns in a patient population. We present a case-based retrieval framework that incorporates an extraction tool to identify concepts from clinical reports, a disease model to capture necessary context for interpreting extracted concepts, and a model-driven visualization to facilitate querying and interpretation of the results. We describe how the model is used to group, filter, and retrieve similar cases. We present an application of the framework that aids users in exploring a population of intracranial aneurysm patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Applying an Instance-specific Model to Longitudinal Clinical Data for Prediction. A Case-based Retrieval System using Natural Language Processing and Population-based Visualization. Acceleration of Two Point Correlation Function Calculation for Pathology Image Segmentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1