多个数字PCR实验的比较方法

Q1 Biochemistry, Genetics and Molecular Biology Biomolecular Detection and Quantification Pub Date : 2016-09-01 DOI:10.1016/j.bdq.2016.06.004
Michał Burdukiewicz , Stefan Rödiger , Piotr Sobczyk , Mario Menschikowski , Peter Schierack , Paweł Mackiewicz
{"title":"多个数字PCR实验的比较方法","authors":"Michał Burdukiewicz ,&nbsp;Stefan Rödiger ,&nbsp;Piotr Sobczyk ,&nbsp;Mario Menschikowski ,&nbsp;Peter Schierack ,&nbsp;Paweł Mackiewicz","doi":"10.1016/j.bdq.2016.06.004","DOIUrl":null,"url":null,"abstract":"<div><p>The estimated mean copy per partition (<em>λ</em>) is the essential information from a digital PCR (dPCR) experiment because <em>λ</em> can be used to calculate the target concentration in a sample. However, little information is available how to statistically compare dPCR runs of multiple runs or reduplicates. The comparison of <em>λ</em> values from several runs is a multiple comparison problem, which can be solved using the binary structure of dPCR data. We propose and evaluate two novel methods based on Generalized Linear Models (GLM) and Multiple Ratio Tests (MRT) for comparison of digital PCR experiments. We enriched our MRT framework with computation of simultaneous confidence intervals suitable for comparing multiple dPCR runs. The evaluation of both statistical methods support that MRT is faster and more robust for dPCR experiments performed in large scale. Our theoretical results were confirmed by the analysis of dPCR measurements of dilution series.</p><p>Both methods were implemented in the <em>dpcR</em> package (v. 0.2) for the open source <strong>R</strong> statistical computing environment.</p></div>","PeriodicalId":38073,"journal":{"name":"Biomolecular Detection and Quantification","volume":"9 ","pages":"Pages 14-19"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.bdq.2016.06.004","citationCount":"7","resultStr":"{\"title\":\"Methods for comparing multiple digital PCR experiments\",\"authors\":\"Michał Burdukiewicz ,&nbsp;Stefan Rödiger ,&nbsp;Piotr Sobczyk ,&nbsp;Mario Menschikowski ,&nbsp;Peter Schierack ,&nbsp;Paweł Mackiewicz\",\"doi\":\"10.1016/j.bdq.2016.06.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The estimated mean copy per partition (<em>λ</em>) is the essential information from a digital PCR (dPCR) experiment because <em>λ</em> can be used to calculate the target concentration in a sample. However, little information is available how to statistically compare dPCR runs of multiple runs or reduplicates. The comparison of <em>λ</em> values from several runs is a multiple comparison problem, which can be solved using the binary structure of dPCR data. We propose and evaluate two novel methods based on Generalized Linear Models (GLM) and Multiple Ratio Tests (MRT) for comparison of digital PCR experiments. We enriched our MRT framework with computation of simultaneous confidence intervals suitable for comparing multiple dPCR runs. The evaluation of both statistical methods support that MRT is faster and more robust for dPCR experiments performed in large scale. Our theoretical results were confirmed by the analysis of dPCR measurements of dilution series.</p><p>Both methods were implemented in the <em>dpcR</em> package (v. 0.2) for the open source <strong>R</strong> statistical computing environment.</p></div>\",\"PeriodicalId\":38073,\"journal\":{\"name\":\"Biomolecular Detection and Quantification\",\"volume\":\"9 \",\"pages\":\"Pages 14-19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.bdq.2016.06.004\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecular Detection and Quantification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214753516300171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular Detection and Quantification","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214753516300171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 7

摘要

估计的每分割的平均拷贝(λ)是数字PCR (dPCR)实验的基本信息,因为λ可以用来计算样品中的目标浓度。然而,很少的信息是可用的如何统计比较dPCR运行的多个运行或重复。多次运行λ值的比较是一个多重比较问题,可以使用dPCR数据的二元结构来解决。我们提出并评估了两种基于广义线性模型(GLM)和多重比率测试(MRT)的新方法,用于数字PCR实验的比较。我们通过计算适合于比较多个dPCR运行的同时置信区间来丰富我们的MRT框架。对两种统计方法的评估支持MRT在大规模dPCR实验中更快、更稳健。我们的理论结果被稀释系列的dPCR测量结果所证实。这两种方法都在开源R统计计算环境的dpcR包(v. 0.2)中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Methods for comparing multiple digital PCR experiments

The estimated mean copy per partition (λ) is the essential information from a digital PCR (dPCR) experiment because λ can be used to calculate the target concentration in a sample. However, little information is available how to statistically compare dPCR runs of multiple runs or reduplicates. The comparison of λ values from several runs is a multiple comparison problem, which can be solved using the binary structure of dPCR data. We propose and evaluate two novel methods based on Generalized Linear Models (GLM) and Multiple Ratio Tests (MRT) for comparison of digital PCR experiments. We enriched our MRT framework with computation of simultaneous confidence intervals suitable for comparing multiple dPCR runs. The evaluation of both statistical methods support that MRT is faster and more robust for dPCR experiments performed in large scale. Our theoretical results were confirmed by the analysis of dPCR measurements of dilution series.

Both methods were implemented in the dpcR package (v. 0.2) for the open source R statistical computing environment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomolecular Detection and Quantification
Biomolecular Detection and Quantification Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
14.20
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
Publisher's Note Establishing essential quality criteria for the validation of circular RNAs as biomarkers qPCR data analysis: Better results through iconoclasm Considerations and quality controls when analyzing cell-free tumor DNA Next-generation sequencing of HIV-1 single genome amplicons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1