{"title":"大鼠急性失血性休克后肾血流对血管紧张素 1-7 和 7.5% 高渗氯化钠的反应","authors":"Maryam Maleki, Mehdi Nematbakhsh","doi":"10.1155/2016/6562017","DOIUrl":null,"url":null,"abstract":"<p><p>Background. Angiotensin 1-7 (Ang1-7) plays an important role in renal circulation. Hemorrhagic shock (HS) may cause kidney circulation disturbance, and this study was designed to investigate the renal blood flow (RBF) response to Ang1-7 after HS. Methods. 27 male Wistar rats were subjected to blood withdrawal to reduce mean arterial pressure (MAP) to 45 mmHg for 45 min. The animals were treated with saline (group 1), Ang1-7 (300 ng·kg(-1) min(-1)), Ang1-7 in hypertonic sodium chloride 7.5% (group 3), and hypertonic solution alone (group 4). Results. MAP was increased in a time-related fashion (P time < 0.0001) in all groups; however, there was a tendency for the increase in MAP in response to hypertonic solution (P = 0.09). Ang1-7, hypertonic solution, or combination of both increased RBF in groups 2-4, and these were significantly different from saline group (P = 0.05); that is, Ang1-7 leads to a significant increase in RBF to 1.35 ± 0.25 mL/min compared with 0.55 ± 0.12 mL/min in saline group (P < 0.05). Conclusion. Although Ang1-7 administration unlike hypertonic solution could not elevate MAP after HS, it potentially could increase RBF similar to hypertonic solution. This suggested that Ang1-7 recovers RBF after HS when therapeutic opportunities of hypertonic solution are limited. </p>","PeriodicalId":14448,"journal":{"name":"International Journal of Vascular Medicine","volume":"2016 ","pages":"6562017"},"PeriodicalIF":2.5000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4814681/pdf/","citationCount":"0","resultStr":"{\"title\":\"Renal Blood Flow Response to Angiotensin 1-7 versus Hypertonic Sodium Chloride 7.5% Administration after Acute Hemorrhagic Shock in Rats.\",\"authors\":\"Maryam Maleki, Mehdi Nematbakhsh\",\"doi\":\"10.1155/2016/6562017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Background. Angiotensin 1-7 (Ang1-7) plays an important role in renal circulation. Hemorrhagic shock (HS) may cause kidney circulation disturbance, and this study was designed to investigate the renal blood flow (RBF) response to Ang1-7 after HS. Methods. 27 male Wistar rats were subjected to blood withdrawal to reduce mean arterial pressure (MAP) to 45 mmHg for 45 min. The animals were treated with saline (group 1), Ang1-7 (300 ng·kg(-1) min(-1)), Ang1-7 in hypertonic sodium chloride 7.5% (group 3), and hypertonic solution alone (group 4). Results. MAP was increased in a time-related fashion (P time < 0.0001) in all groups; however, there was a tendency for the increase in MAP in response to hypertonic solution (P = 0.09). Ang1-7, hypertonic solution, or combination of both increased RBF in groups 2-4, and these were significantly different from saline group (P = 0.05); that is, Ang1-7 leads to a significant increase in RBF to 1.35 ± 0.25 mL/min compared with 0.55 ± 0.12 mL/min in saline group (P < 0.05). Conclusion. Although Ang1-7 administration unlike hypertonic solution could not elevate MAP after HS, it potentially could increase RBF similar to hypertonic solution. This suggested that Ang1-7 recovers RBF after HS when therapeutic opportunities of hypertonic solution are limited. </p>\",\"PeriodicalId\":14448,\"journal\":{\"name\":\"International Journal of Vascular Medicine\",\"volume\":\"2016 \",\"pages\":\"6562017\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4814681/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Vascular Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2016/6562017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/3/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PERIPHERAL VASCULAR DISEASE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vascular Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/6562017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/3/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
Renal Blood Flow Response to Angiotensin 1-7 versus Hypertonic Sodium Chloride 7.5% Administration after Acute Hemorrhagic Shock in Rats.
Background. Angiotensin 1-7 (Ang1-7) plays an important role in renal circulation. Hemorrhagic shock (HS) may cause kidney circulation disturbance, and this study was designed to investigate the renal blood flow (RBF) response to Ang1-7 after HS. Methods. 27 male Wistar rats were subjected to blood withdrawal to reduce mean arterial pressure (MAP) to 45 mmHg for 45 min. The animals were treated with saline (group 1), Ang1-7 (300 ng·kg(-1) min(-1)), Ang1-7 in hypertonic sodium chloride 7.5% (group 3), and hypertonic solution alone (group 4). Results. MAP was increased in a time-related fashion (P time < 0.0001) in all groups; however, there was a tendency for the increase in MAP in response to hypertonic solution (P = 0.09). Ang1-7, hypertonic solution, or combination of both increased RBF in groups 2-4, and these were significantly different from saline group (P = 0.05); that is, Ang1-7 leads to a significant increase in RBF to 1.35 ± 0.25 mL/min compared with 0.55 ± 0.12 mL/min in saline group (P < 0.05). Conclusion. Although Ang1-7 administration unlike hypertonic solution could not elevate MAP after HS, it potentially could increase RBF similar to hypertonic solution. This suggested that Ang1-7 recovers RBF after HS when therapeutic opportunities of hypertonic solution are limited.