Q4 Biochemistry, Genetics and Molecular BiologyJournal of Stem CellsPub Date : 2015-01-01
Amanda J Listoni, Isadora Arruda, Leandro Maia, Danielle J Barberini, Ian Martins, Fernando C Vasconcellos, Fernanda C Landim-Alvarenga
{"title":"透明质酸-壳聚糖聚电解质多层生物膜培养马骨髓间充质干细胞的分化潜力。","authors":"Amanda J Listoni, Isadora Arruda, Leandro Maia, Danielle J Barberini, Ian Martins, Fernando C Vasconcellos, Fernanda C Landim-Alvarenga","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Nanotechnology techniques have a prominent role in the current technical and scientific scene. The layer-by-layer (LbL) deposition allows obtaining nanostructures with sophisticated multilayer, using a simple, but versatile technique. This procedure, which is used to coat and functionalize surfaces with nanometer- thick films, has applications in bioengineering, medicine, chemistry, materials and chemical engineering among other areas. Chitosan is a biomaterial, coming from the chitin, a very abundant polymer in nature, which has been recently tested as scaffolds. In this experiment we test the hypothesis that the hyaluronic acid-chitosan polyelectrolyte multilayer biofilm would be a good substrate to the adherence of equine mesenchymal stem cells derived from bone marrow. The results showed that these biofilms accelerate the process of cell adhesion on smooth surfaces, allowing a constant cell growth and creating a great option to cover surgical materials.</p>","PeriodicalId":53626,"journal":{"name":"Journal of Stem Cells","volume":"10 2","pages":"69-77"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differentiation Potential of Mesenchymal Stem Cells from Equine Bone Marrow Cultured on Hyaluronic Acid-Chitosan Polyelectrolyte Multilayer Biofilm.\",\"authors\":\"Amanda J Listoni, Isadora Arruda, Leandro Maia, Danielle J Barberini, Ian Martins, Fernando C Vasconcellos, Fernanda C Landim-Alvarenga\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nanotechnology techniques have a prominent role in the current technical and scientific scene. The layer-by-layer (LbL) deposition allows obtaining nanostructures with sophisticated multilayer, using a simple, but versatile technique. This procedure, which is used to coat and functionalize surfaces with nanometer- thick films, has applications in bioengineering, medicine, chemistry, materials and chemical engineering among other areas. Chitosan is a biomaterial, coming from the chitin, a very abundant polymer in nature, which has been recently tested as scaffolds. In this experiment we test the hypothesis that the hyaluronic acid-chitosan polyelectrolyte multilayer biofilm would be a good substrate to the adherence of equine mesenchymal stem cells derived from bone marrow. The results showed that these biofilms accelerate the process of cell adhesion on smooth surfaces, allowing a constant cell growth and creating a great option to cover surgical materials.</p>\",\"PeriodicalId\":53626,\"journal\":{\"name\":\"Journal of Stem Cells\",\"volume\":\"10 2\",\"pages\":\"69-77\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Stem Cells\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Stem Cells","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Differentiation Potential of Mesenchymal Stem Cells from Equine Bone Marrow Cultured on Hyaluronic Acid-Chitosan Polyelectrolyte Multilayer Biofilm.
Nanotechnology techniques have a prominent role in the current technical and scientific scene. The layer-by-layer (LbL) deposition allows obtaining nanostructures with sophisticated multilayer, using a simple, but versatile technique. This procedure, which is used to coat and functionalize surfaces with nanometer- thick films, has applications in bioengineering, medicine, chemistry, materials and chemical engineering among other areas. Chitosan is a biomaterial, coming from the chitin, a very abundant polymer in nature, which has been recently tested as scaffolds. In this experiment we test the hypothesis that the hyaluronic acid-chitosan polyelectrolyte multilayer biofilm would be a good substrate to the adherence of equine mesenchymal stem cells derived from bone marrow. The results showed that these biofilms accelerate the process of cell adhesion on smooth surfaces, allowing a constant cell growth and creating a great option to cover surgical materials.