Nino Gopi Daisy, Elaiya Raja Subramanian, Jackson Durairaj Selvan Christyraj, Dinesh Kumar Sudalai Mani, Johnson Retnaraj Samuel Selvan Christyraj, Kalidas Ramamoorthy, Vaithilingaraja Arumugaswami, Sudhakar Sivasubramaniam
{"title":"原生蚯蚓中枢神经系统再生及社会能力的研究。","authors":"Nino Gopi Daisy, Elaiya Raja Subramanian, Jackson Durairaj Selvan Christyraj, Dinesh Kumar Sudalai Mani, Johnson Retnaraj Samuel Selvan Christyraj, Kalidas Ramamoorthy, Vaithilingaraja Arumugaswami, Sudhakar Sivasubramaniam","doi":"10.1007/s10158-016-0189-0","DOIUrl":null,"url":null,"abstract":"<p><p>Earthworms are segmented invertebrates that belong to the phylum Annelida. The segments can be divided into the anterior, clitellar and posterior parts. If the anterior part of the earthworm, which includes the brain, is amputated, the worm would essentially survive even in the absence of the brain. In these brain amputee-derived worms, the nerve cord serves as the primary control center for neurological function. In this current work, we studied changes in the expression levels of anti-acetylated tubulin and serotonin as the indicators of neuro-regenerative processes. The data reveal that the blastemal tissues express the acetylated tubulin and serotonin from day four and that the worm amputated at the 7th segment takes 30 days to complete the regeneration of brain. The ability of self-assemblage is one of the specific functions of the earthworm's brain. The brain amputee restored the ability of self-assemblage on the eighth day.</p>","PeriodicalId":14430,"journal":{"name":"Invertebrate Neuroscience","volume":"16 3","pages":"6"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10158-016-0189-0","citationCount":"9","resultStr":"{\"title\":\"Studies on regeneration of central nervous system and social ability of the earthworm Eudrilus eugeniae.\",\"authors\":\"Nino Gopi Daisy, Elaiya Raja Subramanian, Jackson Durairaj Selvan Christyraj, Dinesh Kumar Sudalai Mani, Johnson Retnaraj Samuel Selvan Christyraj, Kalidas Ramamoorthy, Vaithilingaraja Arumugaswami, Sudhakar Sivasubramaniam\",\"doi\":\"10.1007/s10158-016-0189-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Earthworms are segmented invertebrates that belong to the phylum Annelida. The segments can be divided into the anterior, clitellar and posterior parts. If the anterior part of the earthworm, which includes the brain, is amputated, the worm would essentially survive even in the absence of the brain. In these brain amputee-derived worms, the nerve cord serves as the primary control center for neurological function. In this current work, we studied changes in the expression levels of anti-acetylated tubulin and serotonin as the indicators of neuro-regenerative processes. The data reveal that the blastemal tissues express the acetylated tubulin and serotonin from day four and that the worm amputated at the 7th segment takes 30 days to complete the regeneration of brain. The ability of self-assemblage is one of the specific functions of the earthworm's brain. The brain amputee restored the ability of self-assemblage on the eighth day.</p>\",\"PeriodicalId\":14430,\"journal\":{\"name\":\"Invertebrate Neuroscience\",\"volume\":\"16 3\",\"pages\":\"6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10158-016-0189-0\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Invertebrate Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10158-016-0189-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/6/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Neuroscience\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Invertebrate Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10158-016-0189-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/6/9 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Neuroscience","Score":null,"Total":0}
Studies on regeneration of central nervous system and social ability of the earthworm Eudrilus eugeniae.
Earthworms are segmented invertebrates that belong to the phylum Annelida. The segments can be divided into the anterior, clitellar and posterior parts. If the anterior part of the earthworm, which includes the brain, is amputated, the worm would essentially survive even in the absence of the brain. In these brain amputee-derived worms, the nerve cord serves as the primary control center for neurological function. In this current work, we studied changes in the expression levels of anti-acetylated tubulin and serotonin as the indicators of neuro-regenerative processes. The data reveal that the blastemal tissues express the acetylated tubulin and serotonin from day four and that the worm amputated at the 7th segment takes 30 days to complete the regeneration of brain. The ability of self-assemblage is one of the specific functions of the earthworm's brain. The brain amputee restored the ability of self-assemblage on the eighth day.
期刊介绍:
Invertebrate Neurosciences publishes peer-reviewed original articles, reviews and technical reports describing recent advances in the field of invertebrate neuroscience. The journal reports on research that exploits the simplicity and experimental tractability of the invertebrate preparations to underpin fundamental advances in neuroscience. Articles published in Invertebrate Neurosciences serve to highlight properties of signalling in the invertebrate nervous system that may be exploited in the field of antiparisitics, molluscicides and insecticides. Aspects of particular interest include:
Functional analysis of the invertebrate nervous system;
Molecular neuropharmacology and toxicology;
Neurogenetics and genomics;
Functional anatomy;
Neurodevelopment;
Neuronal networks;
Molecular and cellular mechanisms of behavior and behavioural plasticity.