家蚕(Bombyx mori L.)神经系统发育和衰老过程中的单糖谱分析。

Q4 Neuroscience Invertebrate Neuroscience Pub Date : 2016-09-01 Epub Date: 2016-06-24 DOI:10.1007/s10158-016-0191-6
Seçkin Soya, Umut Şahar, Sabire Karaçalı
{"title":"家蚕(Bombyx mori L.)神经系统发育和衰老过程中的单糖谱分析。","authors":"Seçkin Soya,&nbsp;Umut Şahar,&nbsp;Sabire Karaçalı","doi":"10.1007/s10158-016-0191-6","DOIUrl":null,"url":null,"abstract":"<p><p>Glycoconjugates have various functions in differentiation, development, aging and in all aspects of normal functioning of organisms. The reason for increased research on this topic is that glycoconjugates locate mostly on the cell surface and play crucial biological roles in the nervous system including brain development, synaptic plasticity, learning, and memory. Considering their roles in the nervous system, information about their existence in the insect nervous system is rather sparse. Therefore, in order to detect monosaccharide content of N- and O-glycans, we carried out capLC-ESI-MS/MS analysis to determine the concentration changes of glucose, mannose, galactose, N-acetylglucosamine (GlcNAc), N-acetylgalactosamine (GalNAc), fucose, xylose, arabinose, and ribose monosaccharides in the nervous system of Bombyx mori during development and aging processes. In addition to LC-MS, lectin blotting was done to detect quantitative changes in N- and O-glycans. Developmental stages were selected as 3rd (the youngest sample), 5th (young) larval instar, motionless prepupa (the oldest sample), and pupa (adult development). Derivatization of monosaccharides was performed with a solution of PMP agent and analyzed with capLC-ESI-MS/MS. For lectin blotting, determination of glycan types was carried out with Galanthus nivalis agglutinin and Peanut agglutinin lectins. In all stages, the most abundant monosaccharide was glucose. Although all monosaccharides were present most abundantly in the youngest stage (3rd instar), they are generally reduced gradually during the aging process. It was observed that amounts of monosaccharides increased again in the pupa stage. According to lectin blotting, N- and O-linked glycoproteins expressions were different and there were some specific glycoprotein expression differences between stages. These findings suggest that the glycosylation state of proteins in the nervous system changes during development and aging in insects in a similar fashion to that reported for vertebrates.</p>","PeriodicalId":14430,"journal":{"name":"Invertebrate Neuroscience","volume":"16 3","pages":"8"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10158-016-0191-6","citationCount":"15","resultStr":"{\"title\":\"Monosaccharide profiling of silkworm (Bombyx mori L.) nervous system during development and aging.\",\"authors\":\"Seçkin Soya,&nbsp;Umut Şahar,&nbsp;Sabire Karaçalı\",\"doi\":\"10.1007/s10158-016-0191-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glycoconjugates have various functions in differentiation, development, aging and in all aspects of normal functioning of organisms. The reason for increased research on this topic is that glycoconjugates locate mostly on the cell surface and play crucial biological roles in the nervous system including brain development, synaptic plasticity, learning, and memory. Considering their roles in the nervous system, information about their existence in the insect nervous system is rather sparse. Therefore, in order to detect monosaccharide content of N- and O-glycans, we carried out capLC-ESI-MS/MS analysis to determine the concentration changes of glucose, mannose, galactose, N-acetylglucosamine (GlcNAc), N-acetylgalactosamine (GalNAc), fucose, xylose, arabinose, and ribose monosaccharides in the nervous system of Bombyx mori during development and aging processes. In addition to LC-MS, lectin blotting was done to detect quantitative changes in N- and O-glycans. Developmental stages were selected as 3rd (the youngest sample), 5th (young) larval instar, motionless prepupa (the oldest sample), and pupa (adult development). Derivatization of monosaccharides was performed with a solution of PMP agent and analyzed with capLC-ESI-MS/MS. For lectin blotting, determination of glycan types was carried out with Galanthus nivalis agglutinin and Peanut agglutinin lectins. In all stages, the most abundant monosaccharide was glucose. Although all monosaccharides were present most abundantly in the youngest stage (3rd instar), they are generally reduced gradually during the aging process. It was observed that amounts of monosaccharides increased again in the pupa stage. According to lectin blotting, N- and O-linked glycoproteins expressions were different and there were some specific glycoprotein expression differences between stages. These findings suggest that the glycosylation state of proteins in the nervous system changes during development and aging in insects in a similar fashion to that reported for vertebrates.</p>\",\"PeriodicalId\":14430,\"journal\":{\"name\":\"Invertebrate Neuroscience\",\"volume\":\"16 3\",\"pages\":\"8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10158-016-0191-6\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Invertebrate Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10158-016-0191-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/6/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Neuroscience\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Invertebrate Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10158-016-0191-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/6/24 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 15

摘要

糖缀合物在生物的分化、发育、衰老和正常功能的各个方面具有多种功能。对这一主题的研究越来越多的原因是糖缀合物主要位于细胞表面,在神经系统中起着至关重要的生物学作用,包括大脑发育、突触可塑性、学习和记忆。考虑到它们在神经系统中的作用,关于它们在昆虫神经系统中存在的信息相当稀少。因此,为了检测N-和o -聚糖的单糖含量,我们采用capLC-ESI-MS/MS分析方法,测定家蚕神经系统中葡萄糖、甘露糖、半乳糖、N-乙酰氨基葡萄糖(GlcNAc)、N-乙酰氨基半乳糖(GalNAc)、焦糖、木糖、阿拉伯糖和核糖单糖在发育和衰老过程中的浓度变化。除LC-MS外,还进行了凝集素印迹检测N-和o -聚糖的定量变化。发育阶段分别为3龄(最年轻)、5龄(最年轻)、静止不动的前蛹(最老)和蛹期(成虫发育)。用PMP试剂衍生化单糖,用capLC-ESI-MS/MS进行分析。凝集素印迹法采用甘蓝花凝集素和花生凝集素测定多糖类型。在所有阶段,葡萄糖是最丰富的单糖。虽然所有单糖在最年轻阶段(第3龄)含量最高,但在衰老过程中它们通常逐渐减少。观察到单糖含量在蛹期再次增加。凝集素印迹结果显示,N-和o -链糖蛋白表达不同,且不同分期间存在特异性糖蛋白表达差异。这些发现表明,在昆虫的发育和衰老过程中,神经系统中蛋白质的糖基化状态的变化与脊椎动物相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Monosaccharide profiling of silkworm (Bombyx mori L.) nervous system during development and aging.

Glycoconjugates have various functions in differentiation, development, aging and in all aspects of normal functioning of organisms. The reason for increased research on this topic is that glycoconjugates locate mostly on the cell surface and play crucial biological roles in the nervous system including brain development, synaptic plasticity, learning, and memory. Considering their roles in the nervous system, information about their existence in the insect nervous system is rather sparse. Therefore, in order to detect monosaccharide content of N- and O-glycans, we carried out capLC-ESI-MS/MS analysis to determine the concentration changes of glucose, mannose, galactose, N-acetylglucosamine (GlcNAc), N-acetylgalactosamine (GalNAc), fucose, xylose, arabinose, and ribose monosaccharides in the nervous system of Bombyx mori during development and aging processes. In addition to LC-MS, lectin blotting was done to detect quantitative changes in N- and O-glycans. Developmental stages were selected as 3rd (the youngest sample), 5th (young) larval instar, motionless prepupa (the oldest sample), and pupa (adult development). Derivatization of monosaccharides was performed with a solution of PMP agent and analyzed with capLC-ESI-MS/MS. For lectin blotting, determination of glycan types was carried out with Galanthus nivalis agglutinin and Peanut agglutinin lectins. In all stages, the most abundant monosaccharide was glucose. Although all monosaccharides were present most abundantly in the youngest stage (3rd instar), they are generally reduced gradually during the aging process. It was observed that amounts of monosaccharides increased again in the pupa stage. According to lectin blotting, N- and O-linked glycoproteins expressions were different and there were some specific glycoprotein expression differences between stages. These findings suggest that the glycosylation state of proteins in the nervous system changes during development and aging in insects in a similar fashion to that reported for vertebrates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Invertebrate Neuroscience
Invertebrate Neuroscience NEUROSCIENCES-
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Invertebrate Neurosciences publishes peer-reviewed original articles, reviews and technical reports describing recent advances in the field of invertebrate neuroscience. The journal reports on research that exploits the simplicity and experimental tractability of the invertebrate preparations to underpin fundamental advances in neuroscience. Articles published in Invertebrate Neurosciences serve to highlight properties of signalling in the invertebrate nervous system that may be exploited in the field of antiparisitics, molluscicides and insecticides. Aspects of particular interest include: Functional analysis of the invertebrate nervous system; Molecular neuropharmacology and toxicology; Neurogenetics and genomics; Functional anatomy; Neurodevelopment; Neuronal networks; Molecular and cellular mechanisms of behavior and behavioural plasticity.
期刊最新文献
In Vivo Bacteriophages' Application for the Prevention and Therapy of Aquaculture Animals-Chosen Aspects. Cloning of the first cDNA encoding a putative CCRFamide precursor: identification of the brain, eyestalk ganglia, and cardiac ganglion as sites of CCRFamide expression in the American lobster, Homarus americanus. Multi-marker approach for the evaluation of environmental impacts of APACS 50WG on aquatic ecosystems. Pedal serotonergic neuron clusters of the pteropod mollusc, Clione limacina, contain two morphological subtypes with different innervation targets. Pharmacological characterization of the forced swim test in Drosophila melanogaster.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1