双氧水基电活化过硫酸盐与光电fenton混合水处理工艺:活性橙16染料的燃烧

IF 5.9 3区 工程技术 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of Industrial and Engineering Chemistry Pub Date : 2023-08-25 DOI:10.1016/j.jiec.2023.05.012
Oscar M. Cornejo, Felipe J. Piña, José L. Nava
{"title":"双氧水基电活化过硫酸盐与光电fenton混合水处理工艺:活性橙16染料的燃烧","authors":"Oscar M. Cornejo,&nbsp;Felipe J. Piña,&nbsp;José L. Nava","doi":"10.1016/j.jiec.2023.05.012","DOIUrl":null,"url":null,"abstract":"<div><p>This paper implements an innovative hybrid water treatment process in a flow plant using hydrogen peroxide-based electro-activated persulfate (EPS-H<sub>2</sub>O<sub>2</sub>) combined with photoelectro-Fenton (PEF) method. The Reactive Orange 16 (RO16) azo dye was used as a persistent organic pollutant (POP) model. A filter-press reactor utilized a Ti|RuO<sub>2</sub> plate and a gas diffusion electrode (GDE) as the anode and cathode. In EPS-H<sub>2</sub>O<sub>2</sub>, persulfate (PS) reacts with H<sub>2</sub>O<sub>2</sub> yielding hydroxyl (<sup>•</sup>OH) and sulfate (<span><math><mrow><msubsup><mrow><mi>S</mi><mi>O</mi></mrow><mrow><mn>4</mn></mrow><mrow><mo>·</mo><mo>-</mo></mrow></msubsup></mrow></math></span>) radicals. In PEF, H<sub>2</sub>O<sub>2</sub> reacts with Fe<sup>2+</sup> producing more <sup>•</sup>OH, completing the TOC removal in the presence of UVA light. The influence of pH (3–9), initial PS concentration (0.5–1.5 mM), initial RO16 dye content (30–50 mg L<sup>-1</sup> TOC), applied current density (<em>j</em>, 5–30 mA cm<sup>−2</sup>), and mean linear flow velocity (<em>u</em>, 7.3–29.1 cm s<sup>−1</sup>) on the EPS-H<sub>2</sub>O<sub>2</sub> process efficiency was examined. The best trial for EPS-H<sub>2</sub>O<sub>2</sub> achieved 37% TOC removal in 360 min electrolysis at <em>j</em> = 10 mA cm<sup>−1</sup>, <em>u</em> = 14.6 cm s<sup>−1</sup>, and <em>P</em><sub>GDE</sub> = 3 psi. Subsequently, at <em>t</em> ≥ 360 min, the synergistic effect between the EPS-H<sub>2</sub>O<sub>2</sub> and PEF processes was carried out by adding 0.5 mM Fe<sup>2+</sup> and UVA light. The best hybrid (EPS-H<sub>2</sub>O<sub>2</sub> + PEF) process test reached 98% mineralization with 30% current efficiency and 0.060 kWh (g TOC)<sup>-1</sup> electrolytic energy consumption. Six carboxylic acids were determined as the main intermediaries, whereas ammonium was the main nitrogen compound throughout the EPS-H<sub>2</sub>O<sub>2</sub> and PEF processes.</p></div>","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"124 ","pages":"Pages 558-569"},"PeriodicalIF":5.9000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hybrid water treatment flow plant using hydrogen peroxide-based electro-activated persulfate and photoelectro-Fenton processes: The combustion of Reactive Orange 16 dye\",\"authors\":\"Oscar M. Cornejo,&nbsp;Felipe J. Piña,&nbsp;José L. Nava\",\"doi\":\"10.1016/j.jiec.2023.05.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper implements an innovative hybrid water treatment process in a flow plant using hydrogen peroxide-based electro-activated persulfate (EPS-H<sub>2</sub>O<sub>2</sub>) combined with photoelectro-Fenton (PEF) method. The Reactive Orange 16 (RO16) azo dye was used as a persistent organic pollutant (POP) model. A filter-press reactor utilized a Ti|RuO<sub>2</sub> plate and a gas diffusion electrode (GDE) as the anode and cathode. In EPS-H<sub>2</sub>O<sub>2</sub>, persulfate (PS) reacts with H<sub>2</sub>O<sub>2</sub> yielding hydroxyl (<sup>•</sup>OH) and sulfate (<span><math><mrow><msubsup><mrow><mi>S</mi><mi>O</mi></mrow><mrow><mn>4</mn></mrow><mrow><mo>·</mo><mo>-</mo></mrow></msubsup></mrow></math></span>) radicals. In PEF, H<sub>2</sub>O<sub>2</sub> reacts with Fe<sup>2+</sup> producing more <sup>•</sup>OH, completing the TOC removal in the presence of UVA light. The influence of pH (3–9), initial PS concentration (0.5–1.5 mM), initial RO16 dye content (30–50 mg L<sup>-1</sup> TOC), applied current density (<em>j</em>, 5–30 mA cm<sup>−2</sup>), and mean linear flow velocity (<em>u</em>, 7.3–29.1 cm s<sup>−1</sup>) on the EPS-H<sub>2</sub>O<sub>2</sub> process efficiency was examined. The best trial for EPS-H<sub>2</sub>O<sub>2</sub> achieved 37% TOC removal in 360 min electrolysis at <em>j</em> = 10 mA cm<sup>−1</sup>, <em>u</em> = 14.6 cm s<sup>−1</sup>, and <em>P</em><sub>GDE</sub> = 3 psi. Subsequently, at <em>t</em> ≥ 360 min, the synergistic effect between the EPS-H<sub>2</sub>O<sub>2</sub> and PEF processes was carried out by adding 0.5 mM Fe<sup>2+</sup> and UVA light. The best hybrid (EPS-H<sub>2</sub>O<sub>2</sub> + PEF) process test reached 98% mineralization with 30% current efficiency and 0.060 kWh (g TOC)<sup>-1</sup> electrolytic energy consumption. Six carboxylic acids were determined as the main intermediaries, whereas ammonium was the main nitrogen compound throughout the EPS-H<sub>2</sub>O<sub>2</sub> and PEF processes.</p></div>\",\"PeriodicalId\":363,\"journal\":{\"name\":\"Journal of Industrial and Engineering Chemistry\",\"volume\":\"124 \",\"pages\":\"Pages 558-569\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial and Engineering Chemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1226086X23002836\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Engineering Chemistry","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1226086X23002836","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

采用基于过氧化氢的电活化过硫酸盐(EPS-H2O2)与光电fenton (PEF)相结合的混合水处理工艺,实现了一种创新的流动装置水处理工艺。以活性橙16 (RO16)偶氮染料作为持久性有机污染物(POP)模型。采用Ti / RuO2板和气体扩散电极(GDE)作为阳极和阴极的压滤反应器。在EPS-H2O2中,过硫酸盐(PS)与H2O2反应生成羟基(•OH)和硫酸盐(SO4·-)自由基。在PEF中,H2O2与Fe2+反应产生更多的•OH,在UVA光的存在下完成TOC的去除。考察了pH(3-9)、初始PS浓度(0.5-1.5 mM)、初始RO16染料含量(30-50 mg L-1 TOC)、外加电流密度(j, 5-30 mA cm - 2)和平均线流速度(u, 7.3-29.1 cm s -1)对EPS-H2O2工艺效率的影响。在j = 10 mA cm - 1, u = 14.6 cm s - 1, PGDE = 3 psi的条件下,电解360 min, EPS-H2O2的TOC去除率达到37%。随后,在t≥360 min时,通过添加0.5 mM Fe2+和UVA光,实现EPS-H2O2与PEF工艺的协同效应。最佳混合(EPS-H2O2 + PEF)工艺试验矿化率达到98%,电流效率为30%,电解能耗为0.060 kWh (g TOC)-1。在EPS-H2O2和PEF过程中,确定了6种羧酸是主要中间体,而铵是主要的氮化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid water treatment flow plant using hydrogen peroxide-based electro-activated persulfate and photoelectro-Fenton processes: The combustion of Reactive Orange 16 dye

This paper implements an innovative hybrid water treatment process in a flow plant using hydrogen peroxide-based electro-activated persulfate (EPS-H2O2) combined with photoelectro-Fenton (PEF) method. The Reactive Orange 16 (RO16) azo dye was used as a persistent organic pollutant (POP) model. A filter-press reactor utilized a Ti|RuO2 plate and a gas diffusion electrode (GDE) as the anode and cathode. In EPS-H2O2, persulfate (PS) reacts with H2O2 yielding hydroxyl (OH) and sulfate (SO4·-) radicals. In PEF, H2O2 reacts with Fe2+ producing more OH, completing the TOC removal in the presence of UVA light. The influence of pH (3–9), initial PS concentration (0.5–1.5 mM), initial RO16 dye content (30–50 mg L-1 TOC), applied current density (j, 5–30 mA cm−2), and mean linear flow velocity (u, 7.3–29.1 cm s−1) on the EPS-H2O2 process efficiency was examined. The best trial for EPS-H2O2 achieved 37% TOC removal in 360 min electrolysis at j = 10 mA cm−1, u = 14.6 cm s−1, and PGDE = 3 psi. Subsequently, at t ≥ 360 min, the synergistic effect between the EPS-H2O2 and PEF processes was carried out by adding 0.5 mM Fe2+ and UVA light. The best hybrid (EPS-H2O2 + PEF) process test reached 98% mineralization with 30% current efficiency and 0.060 kWh (g TOC)-1 electrolytic energy consumption. Six carboxylic acids were determined as the main intermediaries, whereas ammonium was the main nitrogen compound throughout the EPS-H2O2 and PEF processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.40
自引率
6.60%
发文量
639
审稿时长
29 days
期刊介绍: Journal of Industrial and Engineering Chemistry is published monthly in English by the Korean Society of Industrial and Engineering Chemistry. JIEC brings together multidisciplinary interests in one journal and is to disseminate information on all aspects of research and development in industrial and engineering chemistry. Contributions in the form of research articles, short communications, notes and reviews are considered for publication. The editors welcome original contributions that have not been and are not to be published elsewhere. Instruction to authors and a manuscript submissions form are printed at the end of each issue. Bulk reprints of individual articles can be ordered. This publication is partially supported by Korea Research Foundation and the Korean Federation of Science and Technology Societies.
期刊最新文献
Editorial Board Mitochondria-targeted NIR molecular probe for detecting viscosity of gland damage and SO2 in actual samples Advanced Z-scheme H-g-C3N4/Bi2S3 nanocomposites: Boosting photocatalytic degradation of antibiotics under visible light exposure Sodium-doped LiFe0.5Mn0.5PO4 using sodium gluconate as both reducing agent and a doping source in Lithium-ion batteries Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1