结合现场测量和机器学习算法,在工程尺度上评估支撑剂输送的基本特征

IF 4.9 2区 工程技术 Q2 ENERGY & FUELS Journal of Natural Gas Science and Engineering Pub Date : 2022-11-01 DOI:10.1016/j.jngse.2022.104768
Lei Hou , Xiaoyu Wang , Xiaobing Bian , Honglei Liu , Peibin Gong
{"title":"结合现场测量和机器学习算法,在工程尺度上评估支撑剂输送的基本特征","authors":"Lei Hou ,&nbsp;Xiaoyu Wang ,&nbsp;Xiaobing Bian ,&nbsp;Honglei Liu ,&nbsp;Peibin Gong","doi":"10.1016/j.jngse.2022.104768","DOIUrl":null,"url":null,"abstract":"<div><p>The behaviours of the particle settlement, stratified flow and inception of settled particles are essential features that determine the proppant transport in low-viscosity fracturing fluids. Although great efforts have been made to characterize these features, limited research work is performed at field scales. To test the laboratory outcomes, we propose a machine-learning-based workflow to evaluate the essential features using the measurements obtained from shale gas fracturing wells. Over 430,000 groups of fracturing data (1 s time interval) are collected and pre-processed to extract the particle settlement, stratified flow and inception features during fracturing operations. The GRU and SVM algorithms, trained by these features, are applied to predict fracturing pressure. Error analysis (the root mean squared error, RMSE) is carried out to compare the contributions of different features to the pressure prediction, based on which the features and the corresponding calculations are evaluated. Our result shows that the stratified-flow feature (fracture-level) possesses better interpretations for the proppant transport, in which the Bi-power model helps to produce the best predictions. The settlement and inception features (particle-level) perform better in cases where the pressure fluctuates significantly. The features characterize the state of proppant transport, based on which the development of subsurface fracture is also analyzed. Moreover, our analyses of the remaining errors in the pressure-ascending cases suggest that (1) an introduction of the alternate-injection process, and (2) the improved calculation of proppant transport in highly-filled fractures will be beneficial to both experimental observations and field applications.</p></div>","PeriodicalId":372,"journal":{"name":"Journal of Natural Gas Science and Engineering","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating essential features of proppant transport at engineering scales combining field measurements with machine learning algorithms\",\"authors\":\"Lei Hou ,&nbsp;Xiaoyu Wang ,&nbsp;Xiaobing Bian ,&nbsp;Honglei Liu ,&nbsp;Peibin Gong\",\"doi\":\"10.1016/j.jngse.2022.104768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The behaviours of the particle settlement, stratified flow and inception of settled particles are essential features that determine the proppant transport in low-viscosity fracturing fluids. Although great efforts have been made to characterize these features, limited research work is performed at field scales. To test the laboratory outcomes, we propose a machine-learning-based workflow to evaluate the essential features using the measurements obtained from shale gas fracturing wells. Over 430,000 groups of fracturing data (1 s time interval) are collected and pre-processed to extract the particle settlement, stratified flow and inception features during fracturing operations. The GRU and SVM algorithms, trained by these features, are applied to predict fracturing pressure. Error analysis (the root mean squared error, RMSE) is carried out to compare the contributions of different features to the pressure prediction, based on which the features and the corresponding calculations are evaluated. Our result shows that the stratified-flow feature (fracture-level) possesses better interpretations for the proppant transport, in which the Bi-power model helps to produce the best predictions. The settlement and inception features (particle-level) perform better in cases where the pressure fluctuates significantly. The features characterize the state of proppant transport, based on which the development of subsurface fracture is also analyzed. Moreover, our analyses of the remaining errors in the pressure-ascending cases suggest that (1) an introduction of the alternate-injection process, and (2) the improved calculation of proppant transport in highly-filled fractures will be beneficial to both experimental observations and field applications.</p></div>\",\"PeriodicalId\":372,\"journal\":{\"name\":\"Journal of Natural Gas Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Natural Gas Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1875510022003547\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Gas Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875510022003547","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

颗粒沉降、分层流动和沉降颗粒开始的行为是决定支撑剂在低粘度压裂液中运移的基本特征。虽然已经作出了很大的努力来描述这些特征,但在实地尺度上进行的研究工作有限。为了测试实验室结果,我们提出了一种基于机器学习的工作流程,利用从页岩气压裂井中获得的测量数据来评估基本特征。收集了超过43万组压裂数据(间隔时间为1 s),并进行了预处理,提取了压裂作业过程中的颗粒沉降、分层流动和初始特征。通过这些特征训练的GRU和SVM算法被应用于压裂压力预测。进行误差分析(均方根误差,RMSE),比较不同特征对压力预测的贡献,在此基础上对特征和相应的计算进行评价。我们的研究结果表明,层状流动特征(裂缝水平)对支撑剂运移有更好的解释,其中Bi-power模型有助于产生最佳预测。沉降和初始特征(颗粒级)在压力显著波动的情况下表现更好。这些特征表征了支撑剂运移的状态,并在此基础上分析了地下裂缝的发育情况。此外,我们对压力上升情况下剩余误差的分析表明:(1)引入交替注入过程,(2)改进高填充裂缝中支撑剂运移的计算将有利于实验观察和现场应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluating essential features of proppant transport at engineering scales combining field measurements with machine learning algorithms

The behaviours of the particle settlement, stratified flow and inception of settled particles are essential features that determine the proppant transport in low-viscosity fracturing fluids. Although great efforts have been made to characterize these features, limited research work is performed at field scales. To test the laboratory outcomes, we propose a machine-learning-based workflow to evaluate the essential features using the measurements obtained from shale gas fracturing wells. Over 430,000 groups of fracturing data (1 s time interval) are collected and pre-processed to extract the particle settlement, stratified flow and inception features during fracturing operations. The GRU and SVM algorithms, trained by these features, are applied to predict fracturing pressure. Error analysis (the root mean squared error, RMSE) is carried out to compare the contributions of different features to the pressure prediction, based on which the features and the corresponding calculations are evaluated. Our result shows that the stratified-flow feature (fracture-level) possesses better interpretations for the proppant transport, in which the Bi-power model helps to produce the best predictions. The settlement and inception features (particle-level) perform better in cases where the pressure fluctuates significantly. The features characterize the state of proppant transport, based on which the development of subsurface fracture is also analyzed. Moreover, our analyses of the remaining errors in the pressure-ascending cases suggest that (1) an introduction of the alternate-injection process, and (2) the improved calculation of proppant transport in highly-filled fractures will be beneficial to both experimental observations and field applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Natural Gas Science and Engineering
Journal of Natural Gas Science and Engineering ENERGY & FUELS-ENGINEERING, CHEMICAL
CiteScore
8.90
自引率
0.00%
发文量
388
审稿时长
3.6 months
期刊介绍: The objective of the Journal of Natural Gas Science & Engineering is to bridge the gap between the engineering and the science of natural gas by publishing explicitly written articles intelligible to scientists and engineers working in any field of natural gas science and engineering from the reservoir to the market. An attempt is made in all issues to balance the subject matter and to appeal to a broad readership. The Journal of Natural Gas Science & Engineering covers the fields of natural gas exploration, production, processing and transmission in its broadest possible sense. Topics include: origin and accumulation of natural gas; natural gas geochemistry; gas-reservoir engineering; well logging, testing and evaluation; mathematical modelling; enhanced gas recovery; thermodynamics and phase behaviour, gas-reservoir modelling and simulation; natural gas production engineering; primary and enhanced production from unconventional gas resources, subsurface issues related to coalbed methane, tight gas, shale gas, and hydrate production, formation evaluation; exploration methods, multiphase flow and flow assurance issues, novel processing (e.g., subsea) techniques, raw gas transmission methods, gas processing/LNG technologies, sales gas transmission and storage. The Journal of Natural Gas Science & Engineering will also focus on economical, environmental, management and safety issues related to natural gas production, processing and transportation.
期刊最新文献
Editorial Board Machine learning for drilling applications: A review Quantitative characterization of methane adsorption in shale using low-field NMR Dual mechanisms of matrix shrinkage affecting permeability evolution and gas production in coal reservoirs: Theoretical analysis and numerical simulation Experimental study on the effect of hydrate reformation on gas permeability of marine sediments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1