Xin Luo , Xuehua Chen , Junjie Liu , Xiaomin Jiang , Fei Huo
{"title":"含两种不混溶流体的裂隙-多孔岩石中频率相关速度和衰减的数值模拟","authors":"Xin Luo , Xuehua Chen , Junjie Liu , Xiaomin Jiang , Fei Huo","doi":"10.1016/j.jngse.2022.104788","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>The dispersion and attenuation of seismic-wave propagation induced by ‘squirt flow’ effects in hydrocarbon-saturated reservoirs are significantly affected by their rock properties and fluid content. In this study, we analyse the frequency-dependent velocity, attenuation, and seismic responses<span> when fractured porous rock is saturated with two </span></span>immiscible fluids. First, when considering reservoir </span>wettability<span><span>, we calculate the effective fluid viscosity using a stable parameter, the </span>capillary pressure<span>, and a lattice Boltzmann model (LBM)-based </span></span></span>relative permeability<span><span> equation, which is a function of the saturation and viscosity ratio of the immiscible two-phase fluid. Then, we explore the frequency-dependent effects of fractured porous rocks saturated with two immiscible fluids under different cases of viscosity ratios and capillary pressure parameters by employing the Chapman model from the dynamic equivalent-medium theory. Then, we use a four-layer model to analyse the frequency-dependent seismic responses. The results show that the characteristics of frequency-dependent velocity and attenuation are both affected by the wettability, capillary pressure parameter, saturation, and viscosity ratio. The frequency-dependent features are greatly influenced by the capillary pressure parameter and viscosity ratio. For a larger viscosity ratio and lower capillary parameter, a dispersive effect can occur in the seismic frequency band. This indicates that the velocity dispersion anomalies are sensitive to wettability, capillary pressure parameter and viscosity ratio and should not be neglected. Synthetic seismic records demonstrate that the seismic reflection<span> signatures, such as the waveform, amplitude, and reflective travel time, at the interfaces for saturated reservoirs are significantly affected by wettability and saturation. The numerical modeling helps to improve the </span></span>wave propagation in rocks saturated by two immiscible fluids.</span></p></div>","PeriodicalId":372,"journal":{"name":"Journal of Natural Gas Science and Engineering","volume":"107 ","pages":"Article 104788"},"PeriodicalIF":4.9000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical modeling of frequency-dependent velocity and attenuation in a fractured-porous rock saturated with two immiscible fluids\",\"authors\":\"Xin Luo , Xuehua Chen , Junjie Liu , Xiaomin Jiang , Fei Huo\",\"doi\":\"10.1016/j.jngse.2022.104788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>The dispersion and attenuation of seismic-wave propagation induced by ‘squirt flow’ effects in hydrocarbon-saturated reservoirs are significantly affected by their rock properties and fluid content. In this study, we analyse the frequency-dependent velocity, attenuation, and seismic responses<span> when fractured porous rock is saturated with two </span></span>immiscible fluids. First, when considering reservoir </span>wettability<span><span>, we calculate the effective fluid viscosity using a stable parameter, the </span>capillary pressure<span>, and a lattice Boltzmann model (LBM)-based </span></span></span>relative permeability<span><span> equation, which is a function of the saturation and viscosity ratio of the immiscible two-phase fluid. Then, we explore the frequency-dependent effects of fractured porous rocks saturated with two immiscible fluids under different cases of viscosity ratios and capillary pressure parameters by employing the Chapman model from the dynamic equivalent-medium theory. Then, we use a four-layer model to analyse the frequency-dependent seismic responses. The results show that the characteristics of frequency-dependent velocity and attenuation are both affected by the wettability, capillary pressure parameter, saturation, and viscosity ratio. The frequency-dependent features are greatly influenced by the capillary pressure parameter and viscosity ratio. For a larger viscosity ratio and lower capillary parameter, a dispersive effect can occur in the seismic frequency band. This indicates that the velocity dispersion anomalies are sensitive to wettability, capillary pressure parameter and viscosity ratio and should not be neglected. Synthetic seismic records demonstrate that the seismic reflection<span> signatures, such as the waveform, amplitude, and reflective travel time, at the interfaces for saturated reservoirs are significantly affected by wettability and saturation. The numerical modeling helps to improve the </span></span>wave propagation in rocks saturated by two immiscible fluids.</span></p></div>\",\"PeriodicalId\":372,\"journal\":{\"name\":\"Journal of Natural Gas Science and Engineering\",\"volume\":\"107 \",\"pages\":\"Article 104788\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Natural Gas Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1875510022003742\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Gas Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875510022003742","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Numerical modeling of frequency-dependent velocity and attenuation in a fractured-porous rock saturated with two immiscible fluids
The dispersion and attenuation of seismic-wave propagation induced by ‘squirt flow’ effects in hydrocarbon-saturated reservoirs are significantly affected by their rock properties and fluid content. In this study, we analyse the frequency-dependent velocity, attenuation, and seismic responses when fractured porous rock is saturated with two immiscible fluids. First, when considering reservoir wettability, we calculate the effective fluid viscosity using a stable parameter, the capillary pressure, and a lattice Boltzmann model (LBM)-based relative permeability equation, which is a function of the saturation and viscosity ratio of the immiscible two-phase fluid. Then, we explore the frequency-dependent effects of fractured porous rocks saturated with two immiscible fluids under different cases of viscosity ratios and capillary pressure parameters by employing the Chapman model from the dynamic equivalent-medium theory. Then, we use a four-layer model to analyse the frequency-dependent seismic responses. The results show that the characteristics of frequency-dependent velocity and attenuation are both affected by the wettability, capillary pressure parameter, saturation, and viscosity ratio. The frequency-dependent features are greatly influenced by the capillary pressure parameter and viscosity ratio. For a larger viscosity ratio and lower capillary parameter, a dispersive effect can occur in the seismic frequency band. This indicates that the velocity dispersion anomalies are sensitive to wettability, capillary pressure parameter and viscosity ratio and should not be neglected. Synthetic seismic records demonstrate that the seismic reflection signatures, such as the waveform, amplitude, and reflective travel time, at the interfaces for saturated reservoirs are significantly affected by wettability and saturation. The numerical modeling helps to improve the wave propagation in rocks saturated by two immiscible fluids.
期刊介绍:
The objective of the Journal of Natural Gas Science & Engineering is to bridge the gap between the engineering and the science of natural gas by publishing explicitly written articles intelligible to scientists and engineers working in any field of natural gas science and engineering from the reservoir to the market.
An attempt is made in all issues to balance the subject matter and to appeal to a broad readership. The Journal of Natural Gas Science & Engineering covers the fields of natural gas exploration, production, processing and transmission in its broadest possible sense. Topics include: origin and accumulation of natural gas; natural gas geochemistry; gas-reservoir engineering; well logging, testing and evaluation; mathematical modelling; enhanced gas recovery; thermodynamics and phase behaviour, gas-reservoir modelling and simulation; natural gas production engineering; primary and enhanced production from unconventional gas resources, subsurface issues related to coalbed methane, tight gas, shale gas, and hydrate production, formation evaluation; exploration methods, multiphase flow and flow assurance issues, novel processing (e.g., subsea) techniques, raw gas transmission methods, gas processing/LNG technologies, sales gas transmission and storage. The Journal of Natural Gas Science & Engineering will also focus on economical, environmental, management and safety issues related to natural gas production, processing and transportation.