{"title":"载百里醌脑小体对雄性Wistar大鼠脑缺血模型的神经保护作用","authors":"Somayyeh Hatami Nemati Ph.D candidate , Mohammad Reza Bigdeli Ph.D , Fatemeh Mortazavi Moghadam Ph.D , Kazem Sharifi Ph.D","doi":"10.1016/j.nano.2022.102637","DOIUrl":null,"url":null,"abstract":"<div><p>The complex stroke pathophysiology, like oxidative stress and inflammatory reactions, causes substantially challenged in stroke treatment. Thymoquinone (TQ) is attributed to pharmacological actions like antioxidant and anti-inflammation. Thymoquinone is chemically hydrophobic, which causes poor solubility and bioavailability. To overcome this challenge Thymoquinone niosome was applied in this in-vivo study. The results demonstrated a significant reduction in rats treated with Thymoquinone niosome compared to free Thymoquinone and control groups (SOD), (TAC), and (GPX) activities were increased in the TQN group compared to the MCAO control group. The decrease in (MDA) level was seen in the Thymoquinone niosome group compared to the MCAO control group. The inflammation factors expression rates of IL-IB, IL-6, TNFα in I/R Thymoquinone niosome group were decreased. This study indicated that Thymoquinone niosome might be utilized as a promising novel carrier to improve Thymoquinone bioavailability and therapeutic effect in treating cerebral I/R injury.</p></div>","PeriodicalId":396,"journal":{"name":"Nanomedicine: Nanotechnology, Biology and Medicine","volume":"48 ","pages":"Article 102637"},"PeriodicalIF":4.7000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Neuroprotective effects of niosomes loaded with thymoquinone in the cerebral ischemia model of male Wistar rats\",\"authors\":\"Somayyeh Hatami Nemati Ph.D candidate , Mohammad Reza Bigdeli Ph.D , Fatemeh Mortazavi Moghadam Ph.D , Kazem Sharifi Ph.D\",\"doi\":\"10.1016/j.nano.2022.102637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The complex stroke pathophysiology, like oxidative stress and inflammatory reactions, causes substantially challenged in stroke treatment. Thymoquinone (TQ) is attributed to pharmacological actions like antioxidant and anti-inflammation. Thymoquinone is chemically hydrophobic, which causes poor solubility and bioavailability. To overcome this challenge Thymoquinone niosome was applied in this in-vivo study. The results demonstrated a significant reduction in rats treated with Thymoquinone niosome compared to free Thymoquinone and control groups (SOD), (TAC), and (GPX) activities were increased in the TQN group compared to the MCAO control group. The decrease in (MDA) level was seen in the Thymoquinone niosome group compared to the MCAO control group. The inflammation factors expression rates of IL-IB, IL-6, TNFα in I/R Thymoquinone niosome group were decreased. This study indicated that Thymoquinone niosome might be utilized as a promising novel carrier to improve Thymoquinone bioavailability and therapeutic effect in treating cerebral I/R injury.</p></div>\",\"PeriodicalId\":396,\"journal\":{\"name\":\"Nanomedicine: Nanotechnology, Biology and Medicine\",\"volume\":\"48 \",\"pages\":\"Article 102637\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine: Nanotechnology, Biology and Medicine\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S154996342200123X\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine: Nanotechnology, Biology and Medicine","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S154996342200123X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Neuroprotective effects of niosomes loaded with thymoquinone in the cerebral ischemia model of male Wistar rats
The complex stroke pathophysiology, like oxidative stress and inflammatory reactions, causes substantially challenged in stroke treatment. Thymoquinone (TQ) is attributed to pharmacological actions like antioxidant and anti-inflammation. Thymoquinone is chemically hydrophobic, which causes poor solubility and bioavailability. To overcome this challenge Thymoquinone niosome was applied in this in-vivo study. The results demonstrated a significant reduction in rats treated with Thymoquinone niosome compared to free Thymoquinone and control groups (SOD), (TAC), and (GPX) activities were increased in the TQN group compared to the MCAO control group. The decrease in (MDA) level was seen in the Thymoquinone niosome group compared to the MCAO control group. The inflammation factors expression rates of IL-IB, IL-6, TNFα in I/R Thymoquinone niosome group were decreased. This study indicated that Thymoquinone niosome might be utilized as a promising novel carrier to improve Thymoquinone bioavailability and therapeutic effect in treating cerebral I/R injury.
期刊介绍:
Nanomedicine: Nanotechnology, Biology and Medicine (NBM) is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.