{"title":"聚乳酸基聚合物纳米颗粒介导的纳维托克拉克和地西他滨共同递送用于癌症治疗","authors":"Neha Mehrotra PhD , Mohd Anees M.Sc , Sachchidanand Tiwari M.Tech , Surender Kharbanda PhD , Harpal Singh PhD","doi":"10.1016/j.nano.2022.102627","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span><span>Combination chemotherapy<span> with systemic administration of </span></span>drugs in their free form can be challenging due to non-synchronized </span>pharmacokinetics and sub-optimal tumor accumulation. The present study investigates a PLA-based block copolymeric </span>nanocarrier<span> for the co-delivery of navitoclax and </span></span>decitabine<span><span><span> (NAV/DCB NPs) for combination cancer therapy. NAV/DCB NPs exhibited potent in vitro synergistic cytotoxicity in both acute myeloid leukemia<span> and breast cancer cell lines<span>. Biodistribution studies of NAV/DCB NPs in tumor bearing mice, showed significant drug accumulation in tumor tissue and detectable quantities in plasma even after 48 h. Good </span></span></span>hemocompatibility<span><span> with reduced in vivo platelet toxicity indicated that encapsulation in PLA-based nanocarrier helped ameliorate navitoclax associated thrombocytopenia<span>. In vivo biological activity of NAV/DCB NPs evaluated in </span></span>xenograft<span> AML and </span></span></span>syngeneic<span> breast cancer model, demonstrated potent tumor growth inhibition efficacy. PLA-based NAV/DCB dual NPs present a novel, safe and effective nanoformulation for combination cancer therapy in both solid tumors<span> and hematologic malignancies.</span></span></span></p></div>","PeriodicalId":396,"journal":{"name":"Nanomedicine: Nanotechnology, Biology and Medicine","volume":"47 ","pages":"Article 102627"},"PeriodicalIF":4.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Polylactic acid based polymeric nanoparticle mediated co-delivery of navitoclax and decitabine for cancer therapy\",\"authors\":\"Neha Mehrotra PhD , Mohd Anees M.Sc , Sachchidanand Tiwari M.Tech , Surender Kharbanda PhD , Harpal Singh PhD\",\"doi\":\"10.1016/j.nano.2022.102627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span><span>Combination chemotherapy<span> with systemic administration of </span></span>drugs in their free form can be challenging due to non-synchronized </span>pharmacokinetics and sub-optimal tumor accumulation. The present study investigates a PLA-based block copolymeric </span>nanocarrier<span> for the co-delivery of navitoclax and </span></span>decitabine<span><span><span> (NAV/DCB NPs) for combination cancer therapy. NAV/DCB NPs exhibited potent in vitro synergistic cytotoxicity in both acute myeloid leukemia<span> and breast cancer cell lines<span>. Biodistribution studies of NAV/DCB NPs in tumor bearing mice, showed significant drug accumulation in tumor tissue and detectable quantities in plasma even after 48 h. Good </span></span></span>hemocompatibility<span><span> with reduced in vivo platelet toxicity indicated that encapsulation in PLA-based nanocarrier helped ameliorate navitoclax associated thrombocytopenia<span>. In vivo biological activity of NAV/DCB NPs evaluated in </span></span>xenograft<span> AML and </span></span></span>syngeneic<span> breast cancer model, demonstrated potent tumor growth inhibition efficacy. PLA-based NAV/DCB dual NPs present a novel, safe and effective nanoformulation for combination cancer therapy in both solid tumors<span> and hematologic malignancies.</span></span></span></p></div>\",\"PeriodicalId\":396,\"journal\":{\"name\":\"Nanomedicine: Nanotechnology, Biology and Medicine\",\"volume\":\"47 \",\"pages\":\"Article 102627\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine: Nanotechnology, Biology and Medicine\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1549963422001137\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine: Nanotechnology, Biology and Medicine","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1549963422001137","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Polylactic acid based polymeric nanoparticle mediated co-delivery of navitoclax and decitabine for cancer therapy
Combination chemotherapy with systemic administration of drugs in their free form can be challenging due to non-synchronized pharmacokinetics and sub-optimal tumor accumulation. The present study investigates a PLA-based block copolymeric nanocarrier for the co-delivery of navitoclax and decitabine (NAV/DCB NPs) for combination cancer therapy. NAV/DCB NPs exhibited potent in vitro synergistic cytotoxicity in both acute myeloid leukemia and breast cancer cell lines. Biodistribution studies of NAV/DCB NPs in tumor bearing mice, showed significant drug accumulation in tumor tissue and detectable quantities in plasma even after 48 h. Good hemocompatibility with reduced in vivo platelet toxicity indicated that encapsulation in PLA-based nanocarrier helped ameliorate navitoclax associated thrombocytopenia. In vivo biological activity of NAV/DCB NPs evaluated in xenograft AML and syngeneic breast cancer model, demonstrated potent tumor growth inhibition efficacy. PLA-based NAV/DCB dual NPs present a novel, safe and effective nanoformulation for combination cancer therapy in both solid tumors and hematologic malignancies.
期刊介绍:
Nanomedicine: Nanotechnology, Biology and Medicine (NBM) is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.